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Abstract

As a result of measurement noise and uncertainties in model-driven factors such as initial

conditions, boundary conditions, domain geometry, model parameters, and other model

inputs it is necessary to quantify uncertainties in solutions of PDE-based models for

science and engineering applications. The Monte Carlo sampling method is one of the most

popular approaches in handling uncertainties of high-dimensional and nonlinear problems,

but it comes with a high computational cost due to repeated model evaluations.

In this work, we propose a suite of accelerated Monte Carlo methods for quantify-

ing uncertainties in elliptic PDE problems. We explore the use of methods based on

finite element discretization such as the hp-finite element method and the streamline-

upwind/Petrov-Galerkin method in the context of multi-level Monte Carlo (MLMC) and

multi-index Monte Carlo (MIMC) methods. In this setting, we employ finite element-

based methods for the discretization of elliptic and convection-diffusion problems with

random conductivity modelled as a convolution of a Gaussian process.

We propose and investigate several methods including geometric MLMC and MIMC

with different polynomial order of the basis functions; hp-MLMC in which we refine mesh

and increase the order of basis functions simultaneously with level; p-MLMC in which

we only increase the order of basis functions without any further mesh refinement; and a

homotopy-based MLMC in which we use a homotopy parameter to construct a hierarchy

of discretized eigenvalue problems. In addition to these methods, we also develop and

investigate new choices of the index sets in MIMC including various combinations of

refining the grid spacing in x and y directions as well as polynomial order in x and y. To

illustrate the efficiency of our methods, we consider a variety of quantities of interest with

different modes of convergence and regularity properties for the mean and variance, such

as the average solution in a given volume and the smallest eigenvalue of a non-self-adjoint

operator.
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Chapter 1

Introduction

Uncertainties arise in a variety of physical and scientific applications and their numerical

simulations. Measurement noise, limitations of mathematical models, existence of hidden

variables, randomness of input parameters, and other factors contribute to uncertainties

in modelling and prediction of many phenomena. Fundamentally, two main classes of

uncertainties are considered. Aleatory uncertainty concerns randomness that is inherent

and epistemic uncertainty concerns the lack of knowledge in computational models [90].

Although uncertainties appear in many applications, the field of uncertainty quantification

(UQ) emerged only recently.

UQ can be split into several areas but the two major ones are forward propagation

of uncertainty and inverse uncertainty quantification. Forward uncertainty propagation

considers processes with random input, such as initial and boundary conditions, domain

geometry, material properties, etc. in the computational model and analyzes their effect

on chosen output parameters or a quantity of interest (QoI). Typical outcomes of the

uncertainty propagation phase may include summary statistics, such as output mean and

variance. The models are usually described by stochastic partial differential equations

(PDEs). In practice, random inputs of stochastic PDEs are approximated as a finite num-

ber of random variables which is usually large. As such, Monte Carlo sampling is one of the

most flexible approaches for quantifying uncertainties of stochastic PDEs [13, 44, 69, 72].

Typically, Monte Carlo is used in the high-dimensional and nonlinear setting. The main

drawback of Monte Carlo simulation is its slow convergence, as it needs O(N−1/2) samples,

and each drawn sample usually requires a solution of the PDE which can be expensive.

Variance reduction techniques are used to reduce the computational cost of Monte Carlo,

such as control variates, antithetic sampling, and importance sampling. A recent popu-

lar approach for solving stochastic PDEs is the multi-level Monte Carlo technique which

is based on control variates. Alternative approaches may include modelling stochastic

PDEs based on a polynomial chaos expansion, such as stochastic Galerkin, stochastic

collocation, etc. [34, 63, 98, 99, 100], but these methods suffer from the so-called curse

of dimensionality as well as from strong nonlinearity, with the number of terms in the

stochastic expansion growing exponentially with dimension [41].
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Inverse uncertainty quantification concerns estimating the input parameters given in-

complete and noisy observations of outputs. Since most inverse problems are ill-posed,

Bayesian inference is naturally suited to regularize the ill-posedness [93]. The frame-

work allows to incorporate a priori information regarding the uncertainties into a prior

distribution to obtain the posterior probability density function based on the likeli-

hood [6, 25, 44]. However, its computational cost poses a challenge in constructing an

efficient Markov chain Monte Carlo method for sampling from unknown posterior distri-

butions [17, 29, 58, 93].

This work examines only forward uncertainty propagation with a focus on Monte

Carlo sampling methods. The multi-level Monte Carlo (MLMC) method and its exten-

sion, the multi-index Monte Carlo (MIMC) method provide variance reduction techniques

that utilize a sequence of approximate models of the QoI with increasing accuracy and

computational cost. MLMC-based methods exploit the linearity of expectation to mini-

mize the variance of the estimated output QoI. As a result, a smaller number of solutions

of the finest and most expensive PDE model is required to achieve a certain accuracy.

The main idea was introduced by Heinrich in 2001 [46], then generalized by Giles in

2008 [39]. There is vast literature available on the application of MLMC to stochastic

PDEs [8, 10, 22, 37, 38, 66, 76, 87, 96]. A general overview of MLMC is presented in [40]

by Giles with several applications for stochastic DEs, such as the simple Euler-Maruyama

discretization, Lévy processes, elliptic PDEs, etc. One generalization of MLMC is MIMC

which was introduced by Haji-Ali, Nobile and Tempone in 2014 [43]. Haji-Ali et al. con-

structed a set of approximate QoI based on the spatial discretization in each direction of

a multi-dimensional PDE and provided an example for a 3D elliptic problem with random

conductivity showing its superiority compared to MLMC and standard Monte Carlo.

The goal of the dissertation is to design and apply various efficient and practical

MLMC and MIMC techniques in the context of 2D elliptic PDEs with random input. We

consider random self-adjoint and non-self-adjoint elliptic problems. The conductivity in

both cases is modelled as a random field which serves as an accurate representation of a

realistic heterogeneous field. In the case of a self-adjoint elliptic problem, we employ the

Galerkin finite element method to discretize the PDE with the use of high-order polyno-

mial basis functions. This allows us to develop several MLMC and MIMC methods based

on various combinations of h-, p-, and hp- refinement strategies. This thesis advances the

MIMC approach and constructs sets of discretized PDE models based on the notion of

incompleteness of polynomials in 2D of a different order in x and y directions of finite

elements. This way, the variance reduction rate becomes even higher compared to MIMC

with the use of only spatial discretization. For the case of non-self-adjoint elliptic prob-

lems, we consider the smallest eigenvalue as QoI. Since the non-self-adjoint eigenvalue

problem demands special care in choosing the discretization method, we extend MLMC

to continuation-based homotopy methods [19, 71]. We also consider an alternative ap-

proach based on the Petrov-Galerkin formulation [15, 16]. That way, we may include
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cheaper models into the multi-level sequence, so the total computational time will be less

than when using a plain Galerkin formulation. Since the multi-level differences require

solutions with the same realization of the random field for adjacent levels, we utilize a

two-grid method for the presented iterative solvers: the biconjugate gradient stabilized

method (BiCGStab), and the Rayleigh quotient and Arnoldi methods. Finally, we ana-

lyze the convergence of the mean and the variance and the computational complexity of

the presented methods and compare with classical Monte Carlo simulation.

1.1 Outline of thesis

This dissertation is organized as follows. Chapter 2 introduces the standard, multi-level,

and multi-index Monte Carlo methods along with necessary theory. Chapter 3 focuses on

MLMC and MIMC for the 2D elliptic boundary value problem with randomness in conduc-

tivity. It proposes several MLMC and MIMC strategies based on various properties of the

finite element discretization. It also introduces some novel techniques utilizing incomplete

multivariate polynomials. Then, the methods developed are compared for two quantities

of interest. The convection-diffusion eigenvalue problem is the subject of Chapter 4. An

additional MLMC method is developed based on the homotopy continuation method to

find the smallest eigenvalue of the convection-diffusion operator. Two eigenvalue solvers

are coupled with MLMC: the Rayleigh quotient and implicitly restarted Arnoldi itera-

tions. Chapter 5 considers an approach based on the streamline-upwind/Petrov-Galerkin

method for finding the smallest eigenvalue of the convection-diffusion operator in the

context of high velocity. Finally, Chapter 6 summarizes the work and suggests future

developments.
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Chapter 2

Multi-level and multi-index Monte

Carlo methods

In this chapter we discuss various Monte Carlo variance reduction techniques with the

primary focus on the multi-level and multi-index Monte Carlo methods. We start with a

general description of the classical Monte Carlo method. Next we introduce the two-level

Monte Carlo method and its generalizations, the multi-level and multi-index Monte Carlo

methods. This chapter serves as a foundation to the next chapters in which we develop

new applications of these methods to a wide range of problems.

2.1 Classic Monte Carlo method

Suppose we want to estimate the value of an integral

I(g(ω)) =

∫
D

g(ω) dω, (2.1)

where D is a d-dimensional cube [0; 1]d and ω ∈ D. We could use Gaussian quadrature to

calculate the integral but if the domain D is in a high-dimensional space or if the function

g(ω) exhibits a highly nonlinear behaviour then the estimation would be computationally

expensive.

In such case, the use of Monte Carlo techniques would be a more suitable approach. For

that, we treat the independent variable ω and the function g(ω) as a random variable and

a random function, respectively. Then we draw N independent and identically distributed

(i.i.d.) random samples ω1, . . . , ωN from the uniform distribution. And thus, the classic

Monte Carlo estimator for the integral (2.1) is defined as

I ≈ IN =
1

N

N∑
n=1

g(ωn), (2.2)

which is equivalent to finding the expectation E[g(ω)] of the function g(ω), i.e. I(g(ω)) =
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E[g(ω)]. Because of the law of large numbers the value IN converges to the integral I as

N →∞ with probability 1.

If the variance V[g(ω)] = E[(g(ω) − E[g(ω)])2] of the function g(ω) is finite then the

convergence rate of the estimator is given by the central limit theorem:

εN(g) = (IN − I)→ N
(

0,
VN [g]

N

)
in distribution, (2.3)

where VN [g(ω)] = E[(IN−E[IN ])2]. Thus, the root mean square error (RMSE)
√

E[(εN(g))2]

of the Monte Carlo estimator IN is O(N−1/2).

Therefore, it may require a very large number of samples to make an estimation of

the integral I(g) with a given RMSE. In situations when one needs to account for the

cost of each sample, e.g., when each sample requires solving a linear system of equations,

this would lead to a large computational cost. Various techniques exist to reduce the cost

of the Monte Carlo estimator, mainly focusing on the minimization of the variance, such

as importance sampling in which one uses specifically constructed sequences of samples

that are no longer i.i.d random samples. Another approach is to use methods based on

control variates for the variance reduction in which a known function is used to estimate

the function of interest by utilizing the difference between them.

2.2 Two-level Monte Carlo method

Suppose the function g can be obtained via a discretization of the underlying PDEs of a

model. To estimate the expected value E[g] with a given RMSE, one can use a solution

g0 computed with a low accuracy and with low cost as a control variate. For example,

in a case where the domain of the PDEs is discretized (Figure 2.1), the function g0 can

represent a solution obtained on a coarse mesh while the function g represents a solution

calculated on a fine mesh with higher computational cost and accuracy.

g0 g

Figure 2.1 – Examples of coarse and fine meshes.

Since

E[g]− E[g0] = E[g − g0], (2.4)
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we have

E[g] = E[g0] + E[g − g0], (2.5)

Then one can use the following two-level Monte Carlo estimator

E[g] ≈ 1

N0

N0∑
n0=1

g0(ωn0) +
1

N1

N1∑
n1=1

(g(ωn1)− g0(ωn1)) , (2.6)

We define V0, C0 as the variance and cost of a single sample of g0 and V1, C1 as the

variance and cost of a single sample of g− g0. Then to determine the numbers of samples

N0 and N1 at each level one can perform a minimization of the total cost N0C0 + N1C1

for a total variance N−1
0 V0 +N−1

1 V1 fixed to a value of ε by using a Lagrangian function

L(N0, N1, λ) = N0C0 +N1C1 + λ(N−1
0 V0 +N−1

1 V1 − ε). (2.7)

By solving ∇N0,N1,λL(N0, N1, λ) = 0, we obtain the optimal relation between the numbers

of samples at the coarse and fine levels

N1

N0

=

√
V1/C1√
V0/C0

. (2.8)

In what follows we will see how this optimal choice of sample numbers can substantially

reduce the total cost compared to applying Monte Carlo on the fine level only.

2.3 Multi-level Monte Carlo method

The multi-level Monte Carlo method is based on the simple idea of using a convergent

sequence of approximate solutions to the quantity of interest. Suppose we have a sequence

of values Q0, Q1, . . . , QL−1 approximating with increasing accuracy and cost our quantity

of interest Q, e.g. the sequence {Ql} may represent PDE solutions obtained on a sequence

of discretized meshes using mesh size as a discretization parameter (Figure 2.2). Then we

may construct the relation

E[QL] = E[Q0] +
L∑
`=1

E[Q` −Q`−1], (2.9)

and we can use the following unbiased estimator Y for E[QL]

Y =
L∑
`=0

Y`, Y` =
1

N`

N∑̀
n=1

(Q`(ωn)−Q`−1(ωn)), (2.10)

with Q−1 ≡ 0. The inclusion of the level ` in the superscript (`, n) indicates that inde-

pendent samples are used at each level and N` is the number of samples at level `. Then
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we have

E[Y ] = E[QL], V[Y ] =
L∑
`=0

N−1
` V`, V` ≡ V[Q` −Q`−1], (2.11)

with mean square error (MSE)

MSE ≡ E[(Y − E[Q])2] = V[Y ] + (E[Y ]− E[Q])2. (2.12)

. . .

Figure 2.2 – A sequence of mesh refinements.

To ensure that the MSE is less than ε2, it is sufficient to ensure that the variance V[Y ]

and (E[QL −Q])2 are both less than 1
2
ε2.

In [40], the following theorem is proposed for the computational cost of the MLMC

method.

Theorem 1. [40] Let Q denote a random variable, and let Q` denote the corresponding

level ` numerical approximation with a meshwidth h = h02−` to Q. If there exist positive

constants α, β, γ, c1, c2, c3 such that α ≥ 1
2

min(β, γ) and

I (bias of estimator). |E[Q` −Q]| ≤ c12−α`

II (order of convergence of variance). V[Q` −Q`−1] ≤ c22−β`

III (cost of a sample). C` ≤ c32γ`, where C` is the cost of one sample of Q` −Q`−1,

then there exists a positive constant c4 such that for any ε < e−1 there are values L and

N` for which the multilevel estimator

Y =
L∑
`=0

Y`, (2.13)

has a mean-square-error with bound

MSE ≡ E[(Y − E[Q])2] < ε2 (2.14)

with a computational complexity C with bound

E[C] ≤


c4ε
−2, β > γ;

c4ε
−2(log ε)2, β = γ;

c4ε
−2−(γ−β)/α, β < γ,

(2.15)
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where the constant c4 is independent of α, β, and γ rates.

The theorem can be proved by computing the optimal N` to minimize the total cost

for a fixed variance: for the Lagrangian

L∑
`=0

(N`C` + λ2N−1
` V`)− λ2 ε

2

2
(2.16)

with Lagrange multipliers λ2, this gives N` = λ
√
V`/C` where λ = 2ε−2

∑L
`=0

√
V`C`, so

the equations for the optimal N` become

N` = 2ε−2
√
V`/C`

L∑
i=0

√
ViCi, (2.17)

where V` and C` are the estimated variance and cost of a sample on level `.

If E[Q` −Q`−1] ∝ 2−α` then the remaining error is

E[Q−QL] =
∞∑

`=L+1

E[Q` −Q`−1] = E[QL −QL−1]/(2α − 1). (2.18)

Then the convergence test is
∣∣E[QL−QL−1]

∣∣/(2α−1) < ε/
√

2 where ε is a targeted RMSE.

This will ensure that
∣∣E[Q − QL]

∣∣ < ε/
√

2 reaches an MSE less than ε2. Pseudocode for

the MLMC algorithm is given in Algorithm 1.

Algorithm 1 Multilevel Monte Carlo algorithm [40]

1: start with L = 2 and initial target of N0 samples on levels ` = 0, 1...
2: while extra samples need to be evaluated do
3: evaluate extra samples on each level
4: compute/update estimates for V`, ` = 0, ..., L
5: define optimal N`, ` = 0, ..., L
6: test for weak convergence
7: if not converged, set L := L+ 1, and initialize target NL

8: end while

In case when β > γ, it means that variance reduces faster than the cost increases

with level, and most of the work is spent on the coarsest level. As a result, only O(ε−2)

samples are required to estimate QoI with desired accuracy ε and the total cost will be

C ≈ ε−2V0C0. As an example, a 2D elliptic problem could be considered in which the

problem is discretized with the standard finite element method using linear elements.

Then if we consider a linear functional as QoI, the uniform second order accuracy yields

α = 2 and variance reduction rate is β = 4. The cost increase rate is usually γ < 3 and

therefore the total complexity is O(ε−2).

In the opposite case, when β < γ the total computational work is almost of the same

complexity as the classic Monte Carlo method, meaning that one spends most of the work
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on the finest level. Then the total cost is C ≈ ε−2VLCL. But if β = 2α as V[Q` −Q`−1] is

typically of the same order as E[Q`−Q`−1]2, then CL = O(ε−2−(γ−β)/α) = O(ε−γ/α) (2.15)

which potentially could be better than the standard Monte Carlo method.

In the case when the variance reduction rate and cost increase rate are equal β = γ,

the computational cost and contributions to total variance are evenly distributed across

all levels. The total cost is then ε−2L2V0C0 = ε−2L2VLCL.

2.4 Multi-index Monte Carlo method

The multi-index Monte Carlo (MIMC) method is a generalization of the multi-level Monte

Carlo method. Instead of a sequence of levels with approximate models, we now have an

ordered set of models with index-level ` = (`1, `2, . . . , `D). Suppose we have a finite element

approximation for a 2D problem. Then the refinement can be done in the usual way by

decreasing the element size h. Having a QoI Q, we may construct the following sequence

of levels (Qh0 , Qh1 , . . . , Qh` , . . . , QhL) where hl is mesh size on level `. In MIMC setting,

we can use finite element models by refining in a spatial direction, either in x or y. That

way, we have a 2D index set of approximate models
Qh0xh

0
y Qh1xh

0
y . . . QhLxh

0
y

Qh0xh
1
y Qh1xh

1
y . . . QhLxh

1
y

...
...

. . .
...

Qh0xh
L
y Qh1xh

L
y . . . QhLxh

L
y

 . (2.19)

MIMC uses high-order mixed differences to reduce the variance of the resulting estimator

and its corresponding work [43]. In MLMC, the difference is defined as

∆Q` ≡ Q` −Q`−1,

with Q−1 ≡ 0. Then the telescopic sum becomes

E[Q] =
∑
`≥0

E[∆Q`].

In MIMC, we define a difference in one particular dimension

∆dQ` ≡ Q` −Q`−ed ,

where ed is the unit vector in direction d. Then generalizing to D dimensions, we can

define the cross-difference

∆Q` ≡

(
D∏
d=1

∆d

)
Q`,
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the telescopic sum in MIMC is

E[Q] =
∑
`∈L

E[∆Q`],

and we can use the following unbiased estimator Y for E[QL]

Y =
∑
`∈L

Y`, Y` =
1

N`

N∑̀
n=1

∆Q
(`,n)
` . (2.20)

where L is some index set to be specified later.

For example, consider D = 2 (Figure 2.3). Letting ` = (`1, `2) we have

∆Q` =

(
D∏
d=1

∆d

)
Q` = ∆1∆2Q` = ∆1(Q` −Q`−e2) = ∆1Q` −∆1Q`−e2 =

(Q` −Q`−e1)− (Q`−e2 −Q`−e1−e2) = Q`1,`2 −Q`1−1,`2 −Q`1,`2−1 +Q`1−1,`2−1

Q0,0 Q0,1

Q1,0 Q1,1

Figure 2.3 – A set of meshes using hx and hy as discretization parameters.

Haji-Ali et al. [43] formulated the following theorem for the computational cost of the

MIMC method.

Theorem 2. Let denote Q a random variable, and let Q` denote the corresponding level

` = (`1, `2, . . . , `D) numerical approximation with a meshwidth hd = h0,d2
−`d d = 1, D. If

there exist positive D-dimensional vectors α,β,γ, with αd ≥ 1
2
βd for d = 1, . . . , D, and

also positive constants c1, c2, c3 such that

I (weak convergence of estimator). |E[Q` −Q]| → 0 as min
d
ld →∞,
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II (bias of estimator). E` = |E[∆Q`]| ≤ c12−α`,

III (order of convergence of variance). V` = V[∆Q`] ≤ c22−β`,

IV (cost of a sample). C` = C(∆Q`) ≤ c32γ`, where C` is the cost of one sample of

∆Q`,

then there exists a positive constant c4 such that for any ε < e−1 there is a set of levels

L, and integers N` for which the multi-index estimator

Y =
∑
`∈L

Y`,

has the mean-square error with bound

MSE ≡ E[(Y − E[Q])2] < ε2,

with a computational complexity C with bound

E[C] ≤


c4ε
−2, η < 0;

c4ε
−2| log ε|e1 , η = 0;

c4ε
−2−η| log ε|e2 , η > 0,

(2.21)

where

η = max
d

γd − βd
αd

,

and the exponents e1 and e2 are detailed in [43].

The theorem can be proved by computing the optimal index-set

L(L) = {` ∈ Nd, L ∈ R : ` · δ =
D∑
d=1

`dδd ≤ L},

where δ is a general vector of weights satisfying the following property∑
d∈D

δd = 1 and 0 < δd ≤ 1,

with its components defined as

δd =
log 2(αd + γd−βd

2
)

Cδδδ
,

and

Cδδδ =
D∑
d=1

log(2)(αj +
γj − βj

2
).
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The quasi-optimal number of samples is given by

N` = ε−2

√
V`
C`

∑
τ∈L

√
VτCτ ,

for all ` ∈ L.

If it is possible to construct an optimal index set L with the property βd > γd in each

direction, then the overall computational complexity will be the optimal O(ε−2) because

η < 0 in Eq. (2.21). The multi-index Monte Carlo method is applied in cases where

the multi-level Monte Carlo may fail to perform compared to the standard Monte Carlo.

Such cases usually include high-dimensional PDEs, since the variance reduction rate β is

independent of the dimension of PDEs but the cost increase rate γ typically increases at

least linearly with dimension. On the other hand, the multi-index Monte Carlo method

removes the dependence on the dimension D for the cost γ. An example is given in [40]

for the case of a D-dimensional elliptic PDE.

The goal of this thesis is to develop and test new MIMC approaches that improve

the efficiency of uncertainty quantification methods for two-dimensional PDE problems.

In the next chapter we will investigate new choices for the dimensions d along which the

MIMC approach is applied, including various combinations of refining the grid spacing in

x and y and the polynomial order in x and y.
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Chapter 3

Fast Monte Carlo methods for

elliptic PDEs

In this chapter, we review some existing multi-level and multi-index Monte Carlo methods

in the context of the hp-finite element method (hp-FEM), and introduce new multi-index

strategies that can exploit the hierarchy created by the hp-FEM discretization. We con-

sider an elliptic problem with random coefficients modelled as a random field constructed

by convolution of Gaussian random variables. Then we describe the hp-finite element

method as the discretization method for the model problem used in the formulation of

the hp-multi-index Monte Carlo method. We conclude the chapter with various numeri-

cal experiments for hp-multi-level Monte Carlo methods, including geometric multi-level,

standard multi-index, and hp-multi-index Monte Carlo methods.

3.1 Model problem

Given a probability space (Ω,A,P), we consider a linear elliptic PDE for the function

u(x;ω) : D × Ω→ R with random coefficients as a model problem

−∇ · κ(x;ω)∇u(x;ω) = f(x;ω), x ∈ D,ω ∈ Ω, (3.1)

in a domain D ⊂ Rd for d = 1, 2, or 3 with Lipschitz boundary Γ = Γ0 ∪ Γ1, Γ0 ∩ Γ1 = ∅.
The conductivity κ(x;ω) : D × Ω → R is a Gaussian process satisfying κ(·, ω) ∈ L∞(D)

for almost all ω ∈ Ω, where x is a spatial coordinate, and ω is a random variable. We

impose the Dirichlet boundary conditions on the boundary Γ0

u|Γ0 = ug, (3.2)

and the Neumann boundary conditions on the boundary Γ1

n · κ∇u|Γ1 = 0, (3.3)
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where n is the outer unit normal vector.

The problem (3.1) may describe a stationary heat distribution u [55, 67, 102]. In

that case κ is the heat conductivity, f is the heat sources, the Dirichlet boundary con-

ditions (3.2) enforce the temperature on the boundary Γ0, and the Neumann boundary

conditions (3.3) impose vanishing heat flow.

3.2 Log-normal random field

To ensure the non-negativity of our random field, we model it as a log-normal random

field through a Gaussian field G(x;ω) : Ω × D → R, so that κ(x;ω) = exp[G(x;ω)].

We also consider only mean zero homogeneous Gaussian fields with Lipschitz continuous

covariance kernel

K(x1, x2) = E [(G(x1;ω)− E[G(x1;ω)])(G(x2;ω)− E[G(x2;ω)])] = k(‖x1 − x2‖), (3.4)

where k(·) ∈ C0,1(R+) is a covariance function with some norm ‖ · ‖ in Rd.

Although Monte Carlo methods do not require an approximation of the random field

G(x;ω), for the simplicity we represent it as a function of a finite number of random

variables. The usual way to approximate the random function is through the use of the

truncated Karhunen-Loève (KL) expansion [1] in which the random process is represented

as a series of bi-orthogonal functions. Another approach to approximate the random field

is to build a convolution process using very simple kernel or point functions [49].

3.2.1 Truncated Karhunen-Loève expansion

The KL expansion is similar to Fourier analysis in terms of a representation of a func-

tion, the key difference is that in the Fourier series approximation the coefficients are

deterministic and the expansion basis consists of trigonometric functions [1, 70]. In the

KL expansion, in contrast, the coefficients are random and the orthogonal functions are

derived from the covariance function of the random process. In its simplest form, the

Karhunen-Loéve expansion is

G(x;ω) =
∞∑
i=1

√
θiφi(x)ξi(ω), (3.5)

where {ξi} is a set of independent, standard Gaussian random variables, θi are the eigen-

values and also non-negative, and φi are the corresponding normalized eigenfunctions of

the covariance operator with a kernel function K(x1, x2). In practical situation, the KL

expansion is usually truncated after m terms

Gm(x;ω) =
m∑
i=1

√
θiφi(x)ξi(ω), (3.6)
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which also gives a good approximation of the random field G for sufficiently large m. This

way then our log-normal random filed yields a finite-dimensional approximation:

κm(x;ω) = exp

[
m∑
i=1

√
θiφi(x)ξi(ω)

]
. (3.7)

3.2.2 Convolution process

We can also use an alternative approach based on the convolution of a Gaussian pro-

cess [49]. By modelling the random process this way, we may reduce the computational

cost of constructing the field and also we gain a flexibility in setting more complicated

models. To construct a Gaussian random field G(x;ω) with zero mean, we convolute

i.i.d. Gaussian random variables over the domain D using a smoothing kernel k(x). The

Gaussian field in this case is

G(x;ω) =
∑
i

ωik(x− ci), (3.8)

where k(x − ci) is a kernel centered at points ci and random variables ωi ∼ N (0, 1)

i.i.d. Figure 3.1 shows some examples of kernels that can be used as a smoothing kernel

k(x) yielding different properties for the field κ(x;ω) while Figure 3.2 shows a log-normal

random field convoluted from 25 exponential kernels.

(a) k(x) ∝ exp{−1
2‖x‖

2}. (b) k(x) ∝ (1− ‖x‖
3

r3
)3I[x ≤ r].

Figure 3.1 – Examples of kernels used in defining convolution processes.

3.3 Finite element method

We use the finite element method to obtain the discretization of the elliptic operator (3.1)

as it allows us to work with arbitrary domain geometry and simple use of high-order
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Figure 3.2 – Examples of log-normal random fields both generated by convolution of 25
i.i.d Gaussian random variables with exponential kernels with uniformly placed centers in
the 5× 5 grid.

polynomial basis functions. This then is utilized in multi-level and multi-index Monte

Carlo settings.

3.3.1 Function spaces

Before going into details of the finite element method, we first define all relevant function

spaces and their associated scalar products and norms. We define the Sobolev space

Hs :=

{
v(x) :

∫
D

∑
0≤α1+...+αn≤s

(
∂α1+...+αnv

∂xα1
1 . . . ∂xαn

n

)2

dx <∞

}
, (3.9)

with the norm

||v||s =

√√√√∫
D

∑
0≤α1+...+αn≤s

(
∂α1+...+αnv

∂xα1
1 . . . ∂xαn

n

)2

dx. (3.10)

We also introduce the infinity-dimensional Lebesgue space L2(D) of square-integrable

functions on D ⊂ Rd which is a special case of the Sobolev space, i.e. L2 ⊂ H1

L2 =

{
v(x) :

∫
D

v(x)2 dx <∞
}
, (3.11)

with the scalar product (u, v)L2(D) =
∫
D
uvdx and norm ||v||L2(D) = (v, v)

1/2

L2(D).

In addition, we introduce the Hölder space Ct(D) with the following semi-norm and

norm

|v|Ct(D) = sup
x,y∈D:x6=y

|v(x)− v(y)|
|x− y|t

and ‖v‖Ct(D) = sup
x∈D
|v(x)|+ |v|Ct(D).

We also consider the Bochner space Lp(Ω,B) of p-summable B-valued random variables
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X with the norm

‖X‖ =

{
(
∫

Ω
‖X(ω)‖pB dP(ω))1/p, for p <∞,

ess supω∈Ω ‖X‖B, for p =∞.

We introduce the following assumptions on the random field. For p ∈ (0,∞) we have:

1. κmin ≥ 0 almost surely and 1/κmin ∈ Lp(Ω);

2. κ ∈ Lp(Ω, Ct(D)) for some 0 < t ≤ 1,

where κmin := minx∈D κ(x;ω), κmax := maxx∈D κ(x;ω).

3.3.2 Weak formulation

We derive the weak form for fixed ω ∈ Ω. For that we rewrite it in the following manner:

R(u;ω) = 0, (3.12)

where

R(u;ω) = −∇ · κ(ω)∇u− f(ω), (3.13)

is called the residual for our PDE (3.1). Next, we require the residual R(u;ω) to be

orthogonal to a test space Φ∫
D

(−∇ · κ(x;ω)∇u(x)− f(x;ω))v(x) dx = 0 ∀v ∈ Φ. (3.14)

Applying Green’s theorem to (3.14), we obtain∫
D

κ(x;ω)∇u(x) · ∇v(x) dx−
∫

Γ1

κ(x;ω)
∂u(x)

∂n
v(x) dΓ−

∫
D

f(x;ω)v(x) dx = 0 ∀v ∈ Φ.

(3.15)

In equation (3.15) we have derivatives of test functions v and as a test space Φ we

can choose the space H1
0 which is the space of square-integrable functions with square-

integrable partial that vanish on the Dirichlet boundary Γ0

H1
0 :=

{
v(x) ∈ H1 : v|Γ0 = 0

}
⊂ H1. (3.16)

As a result of decreasing the order of the derivative of the original elliptic problem, we

have weakened the requirements for our solution u. And now, the weak formulation in

Galerkin form is to find a function u ∈ H1
g such that∫

D

κ(x;ω)∇u(x) · ∇v(x) dx =

∫
D

f(x;ω)v(x) dx ∀v ∈ H1
0 , (3.17)
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where the trial space H1
g is defined as

H1
g :=

{
v(x) ∈ H1 : v|Γ0 = ug

}
⊂ H1, (3.18)

which contains functions with discontinuous derivatives.

3.3.3 Finite element spaces

We define a finite element as a triplet {K,P,Σ} [21] where

• K ⊆ Rn is a bounded, closed subspace with non-empty interior and with piecewise

smooth boundary;

• P is a finite space of the functions defined in K with dimP = n;

• Σ = {L1, L2, . . . , Ln} is a basis of the dual space P ∗ of linear forms Li.

We assume that our bounded domain D with Lipschitz boundary is approximated by

a domain Dh with piecewise smooth boundary. We also define a finite element mesh

Ξh,p = {K1, K2, . . . , Km} with polynomials of degree p ≥ 1 of the domain Dh ⊂ Rn as

a discretization of the domain Dh such that Dh = ∪mi=1Ki. Then instead of looking for

the solution in the entire infinite-dimensional space H1
g , we seek an approximation in a

subspace V h
g of the finite-dimensional subspace V h of space H1, i.e. in V h

g ⊂ V h ⊂ H1.

We approximate the test space H1
0 by a finite-dimensional space V h

0 , V h
0 ⊂ V h ⊂ H1.

These spaces are defined as

V h
g := {v(x) ∈ C0(D) ∩H1

g (D) : v(x)|K ∈ P (K),∀K ∈ Ξh,p}, (3.19)

V h
0 := {v(x) ∈ C0(D) ∩H1

0 (D) : v(x)|K ∈ P (K),∀K ∈ Ξh,p}. (3.20)

As a result, we can now formulate the discrete variational problem of the weak form (3.17):

find uh ∈ V h
g such that∫

D

κ(x;ω)∇uh(x) · ∇vh(x) dx =

∫
D

f(x;ω)vh(x) dx ∀vh ∈ V h. (3.21)

3.3.4 Error analysis

In this section, we list some of the important properties of the finite element solution based

on the fact that our random fieldG(x, ω) is a log-normal random fieldG(x, ω) = log κ(x, ω)

satisfying the assumptions A1 and A2. To present main results on the convergence and

error analysis from the finite element framework, we rewrite our weak formulation (3.21)

in a variational form

A(u, v;ω) = F (v;ω), (3.22)
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A(u, v;ω) :=

∫
D

κ(x;ω)∇u(x) · ∇v(x) dx, (3.23)

F (v;ω) :=

∫
D

f(x;ω)v(x) dx, (3.24)

where A(u, v;ω) and F (v;ω) are called a bilinear form and a linear form, respectively.

Then we consider the following important properties for our bilinear form A(·, ·;ω).

A bilinear form A(·, ·;ω) in a Hilbert space H is continuous (bounded) if ∃C0 < ∞
such that

|A(u, v;ω)| ≤ C0(ω)||u||H · ||v||H ∀u, v ∈ H.

and also is coercive (elliptic or positive definite) in V ⊂ H if there exists α > 0 such that

A(u, v;ω) ≥ α||v||2H ∀v ∈ V.

Let H be a Hilbert space and a bilinear form A(·, ·;ω) is symmetric and bounded in

H and coercive in a subspace V ⊂ H then (V,A(·, ·;ω)) is also a Hilbert space, then

the Lax-Milgram theorem ensures the existence and uniqueness of the weak solution for

almost all random realizations ω (A1).

Theorem 3 (Lax-Milgram theorem). Let (V, (·, ·;ω)) be a Hilbert space, A(·, ·;ω) is a

continuous and coercive bilinear form and F ∈ V ∗ then there exists a unique solution

u ∈ V such that

A(u, v;ω) = F (v;ω) ∀v ∈ V. (3.25)

Lemma 1 (Céa’s lemma). Let uh be the Galerkin approximation then

||u− uh||V ≤
C1(ω)

α
min
v∈Vh
||u− v||V . (3.26)

Our bilinear form defines the energy norm

||v||e =
√
A(v, v;ω)e, (3.27)

so the Céa lemma shows that the approximation error between the finite element solution

uh and the exact solution u for the problem (3.1) in the energy norm satisfies the best

approximation principle. More precisely we have

||u− uh||2e ≤ ||u− vhg ||2e ∀vhg ∈ V h
g , (3.28)

where V h
g is the finite element space satisfying the Dirichlet boundary conditions. Thus,

the inequality (3.28) shows that the finite element solution is the most accurate approx-

imation of the exact solution u in the energy norm (3.27) of the finite element space

V h
g .
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Theorem 4. The approximation error of the finite element solution in the L2-norm is

[33]

||u− uh||L2 ≤ C3(ω)hp+1, (3.29)

where u is the exact solution, uh is the finite element solution, the constant C(ω) depends

only on the problem operator and the domain, h is the length of the elements, and p is the

order of the elements.

3.3.5 Finite element matrices

Every function vh ∈ V h
0 can be expressed as a linear combination

vh(x) =
∑
i∈N

wiψi(x), (3.30)

where n is the total number of basis functions, N := {1, . . . , n0, . . . , n} is the index set of

i of basis functions ψi of the space V h
0 and n0 is the number of nodes corresponding to

the Dirichlet boundary conditions. Then the variational formulation is equivalent to the

following system of linear equations∫
D

κ(x;ω)∇uh(x) · ∇ψi(x) dx =

∫
D

f(x;ω)ψi(x) dx, i ∈ N. (3.31)

The function uh ∈ V h
g can be represented as a linear combination in the space V h

uh(x) =
n∑
j=1

wjψj(x), (3.32)

the n0 weights wj which correspond to the Dirichlet boundary condition are fixed

uh|Γ0
= ug. (3.33)

Substituting (3.32) into (3.31) we get the system of linear algebraic equations

n∑
j=1

(∫
D

κ(x;ω)∇ψj(x) · ∇ψi(x) dx

)
wj =

∫
D

f(x;ω)ψi(x) dx, i ∈ N. (3.34)

Then, by solving this system we obtain the finite element solution uh.

3.3.6 Hierarchical polynomial basis

The choice of basis functions depends on the desired properties for the computational

method. While the Lagrange polynomial basis is simple to construct; the hierarchical basis

functions are advantageous in terms of the condition number of the resulting system of

linear equations and, thus, may improve the convergence of iterative solver methods [102].
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We define hierarchical basis as a family {Bk}k≥0 of sets of polynomials Bk such that

∀k ≥ 0 Bk is a basis for Pk and Bk ⊂ Bk+1.

Hierarchical basis functions on triangular elements. We define a set of hierar-

chical basis functions on the triangle (Figure 3.3) with vertices (x̂0, ŷ0), (x̂1, ŷ1), (x̂2, ŷ2)

via its barycentric coordinates Li [102]

Li(x, y) = αi0 + αi1x+ αi2y, i = 0, 1, 2, (3.35)

so that each function Li is equal to 1 on the vertex (x̂i, ŷi) and zero on the other vertices

of the triangle Ωk. The first three basis functions are the usual L coordinates:

0 1

2

Figure 3.3 – A triangle with nodes defining linear basis functions.

φ0 = L0, φ1 = L1, φ2 = L2. (3.36)

To make the approach second order we need to add another three quadratic functions

associated with the edges:

φ3 = L0L1, φ4 = L1L2, φ5 = L0L2. (3.37)

We add three more cubic functions associated with the edges

φ6 = L0L1(L0 − L1), φ7 = L1L2(L1 − L2), φ8 = L0L2(L0 − L2), (3.38)

and a one function associated with the center of the triangle

φ9 = L0L1L2, (3.39)

to increase the order of the elements further by one. More generally, to construct a basis

of the order p we need to add three basis functions associated with the edges and p − 2

basis functions associated with the center of the element to the set of basis functions of

the order p− 1

φi = L0L1·Pp(L0−L1), φi+1 = L1L2·Pp(L1−L2), φi+2 = L0L2·Pp(L0−L2), (3.40)
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φi+3+j = L0L1L2 · Pp(L0 − L1) · Pp−2−j(2L2 − 1), j = 0 . . . p− 3, (3.41)

where i is the number of basis functions of the order p − 1 and Pp(ξ) is a polynomial of

order p. For example, one can choose the most simple form Pp(ξ) = ξp.

Hierarchical basis functions on rectangular elements. While triangular ele-

ments allow us to work with complex domain geometry, one can exploit the simplicity of

constructing polynomials for rectangular elements. We use rectangular elements to obtain

incomplete polynomials which we utilize later in the multi-index Monte Carlo methods.

For example, the Pascal triangle (Figure 3.4) shows the number of terms needed in order

to construct the complete cubic polynomial and Figure 3.5 shows the number of terms to

construct incomplete polynomials of a different order in x and y directions.

1

x

x2

x3

x4 x3y

x2y

x2y2

xy

y

y2

xy2 y3

xy3 y4

Figure 3.4 – Complete cubic expansion shaded in 2D – 10 terms [102].

We construct basis functions on rectangular elements as the tensor product of one-

dimensional hierarchical basis functions for x and y coordinates,

φi(x, y) = φ̂l(x)φ̂m(y), l = 1, . . . , L, m = 1, . . .M, (3.42)

where M and L are the numbers of basis functions in x and y coordinates, respectively.

The formulation of basis functions in the tensor form allows us to specify the order of

polynomials in any particular direction, x or y. As a result, we are able to use incomplete

finite elements (Figure 3.7). For example, in Figure 3.7a the order of polynomial in x

direction is one, while in y direction the second order is used.

We want our basis to satisfy certain conditions on the orthogonality with respect to

the inner product
∫
D
∇ψj · ∇ψi dx = 0 for at least some i, j. Since Legendre polynomials

possess this property, we apply them in the construction of the hierarchical basis. They
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1

x

x2

x3

x4 x3y

x2y

x2y2

xy

y

y2

xy2 y3

xy3 y4

(a) Cubic expansion into direction x and linear
expansion into direction y; px = 3, py = 1.

1

x

x2

x3

x4 x3y

x2y

x2y2

xy

y

y2

xy2 y3

xy3 y4

(b) Linear expansion into direction x
and quadratic expansion into direction
y; px = 1, py = 2.

Figure 3.5 – Examples of incomplete polynomials in 2D for rectangular finite elements.

can be defined in several ways such as

Pp(ξ) =
1

p!

1

2p
dp

dξp
(
(ξ2 − 1)p

)
, (3.43)

or using a recurrence relation

Pp(ξ) =
2p− 1

p
ξPp−1(ξ)− p− 1

p
Pp−2(ξ), (3.44)

with P0(ξ) = 1 and P1(ξ) = ξ.

0 1

32

(a) First-order rectangle with nodes defining
basis.

0 1

32

4

5

6 78

(b) Second-order rectangle with nodes defining
basis.

Figure 3.6 – Complete rectangular finite elements with nodes defining a linear basis (left)
and a second order basis (right).

Hierarchical basis functions can be obtained from the Legendre polynomials as

φ̂p(ξ) = cp (Pp(ξ)− Pp−2(ξ)) , p ≥ 2, (3.45)

where cp is a non-zero coefficient that can be chosen arbitrarily. The first four basis
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functions are

φ̂0(ξ) =
1

2
(1− ξ), φ̂1ξ =

1

2
(1 + ξ), (3.46)

φ̂2(ξ) = ξ2 − 1, φ̂3(ξ) = ξ3 − ξ. (3.47)

0 1

32

4 5

(a) Rectangular element with nodes defining a
basis with order px = 1, py = 2.

0 1

32

4

5

(b) Rectangular element with nodes defining
a basis with order px = 2, py = 1.

Figure 3.7 – Examples of incomplete finite elements with nodes.

3.3.7 Numerical quadrature

In general, analytical expressions of integrals
∫
Dk
ψiψj dx and

∫
Dk
∇ψi∇ψj dx can be te-

dious to obtain [2, 80]. Instead, we use Gaussian quadrature to perform numerical inte-

gration to assemble the global matrix Ah∫
D

f(x) dx ≈
n∑
i=1

ŵif(xi), (3.48)

where n is the number of nodes xi and wi are weights.

3.4 hp-Multi-level Monte Carlo method for elliptic

PDEs

3.4.1 Model problem

For the testing purposes, we consider the same problem setup for both multi-level and

multi-index Monte Carlo methods. To demonstrate the efficiency of our methods we con-

sider two functionals as our quantities of interest (QoI). The first Q1(u) is the average of

the solution u(x;ω) stored in a given volume V = [0.125; 0.375]× [0.125; 0.625] of the unit

domain D = [0; 1]× [0; 1] (Figure 3.8). This way, we have

Q1(u) =

∫
V

u(x) dx. (3.49)
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The second QoI is the average of flux at three locations

Q2(u) =
1

3

3∑
i=1

‖∇u(xi)‖, (3.50)

where x1 = [0.5; 0.5], x2 = [0.21; 0.78], and x3 = [0.23; 0.3].

As a test problem, we consider our elliptic equation in two dimensions with four

Gaussian sources (Figure 3.9a) in the following form

f(x;ω)k = f(x)k =
ck√
2πσ2

exp

(
−(x− µk)T (x− µk)

2σ2

)
, k = 1 . . . 4. (3.51)

centered at µk where µ1 = [0.25; 0.25], µ2 = [0.25; 0.75], µ3 = [0.75; 0.25], µ4 = [0.75; 0.75]

with weights {ck : −100, 100, 100,−100}, and with the same standard deviation σ2 =

0.005. We also note that the sources are independent of the random variable ω.

The boundary conditions are

u|Γ0 =

{
0, y = 0,

1, y = 1,
(3.52)

n · κ∇u|Γ1 = 0, (3.53)

with boundaries Γ0 = [0; 0]× [0; 1] ∪ [1; 0]× [1; 1] and Γ1 = [0; 0]× [1; 0] ∪ [0; 1]× [1; 1].

0 1

1

Γ0

Γ1

Γ0

Γ1

V

Figure 3.8 – A unit domain containing the volume V in which the average of solution u
presents the first QoI.

As mentioned before, we use a convolution process log κ(x;ω) as our log-normal ran-

dom field. For the test case, we construct the field by convoluting 25 i.i.d. Gaussian random

variables

log κ(x;ω) =
25∑
i=1

ωik(x− ci), (3.54)
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where our smoothing kernel k(x−ci) = exp
[
−25

2
‖x− ci‖

]
with centers ci placed uniformly

as a grid 5× 5 in our domain D. An example of a random field is shown in Figure 3.10.

(a) Four Gaussian sources. (b) Solution u for a random realization ω.

Figure 3.9 – Source f(x) and a solution uω(x) for a single realization of random field.

Figure 3.10 – Log-normal random field for a single realization ω. Kernels used for defining
the convolution process are marked by crosses.

In the multi-level Monte Carlo based methods, we use a mesh with 128 number of

triangular elements, corresponding to the mesh size h0 = 1/8 as the coarsest level.

Since the finite element matrices are nonsymmetric, we use the biconjugate gradi-

ent stabilized (BiCGStab) iterative solver with a given threshold ε` depending on the

discretized mesh to find the solution of the linear systems. Based on the convergence

theorem for the finite element solution given in Section 3.3.4, we may use the following

stopping criteria for the BiCGStab solver

ε` = C̃‖E[Ql −Ql−1]‖/2p+1, (3.55)

where p is the basis order and C̃ is a small constant 0 < C̃ < 1, in our cases, C̃ = 10−2. This
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enforces the threshold ε` to be smaller than the discretization error of the finite element

method. For the first two levels in each MLMC method, we solve the resulting linear

systems almost up to the machine precision error, ε0 = ε1 = 10−14. This is because the a

priori discretization error for the initial level is unknown. But as soon as the discretization

bias is obtained, we are able to derive the error bounds for the further levels based on the

theoretical assumptions about the convergence rate of a given approximation method.

3.4.2 hp-Multi-level Monte Carlo methods

In Chapter 2, we described the case of a general multi-level Monte Carlo method (in which

the quantity of interest QL corresponds to the solution obtained on the finest level L).

Here we use four different strategies to define model hierarchies in the multi-level Monte

Carlo algorithm.

h-MLMC with the linear basis functions (p = 1). This is the standard, so-called

”geometric” multi-level Monte Carlo method which utilizes a sequence of discretized el-

liptic PDE models constructed in such a way that the mesh resolution is doubled with

level increase. The initial level consists of the grid with the first order linear basis func-

tions (p = 1) and the characteristic length (mesh size in one dimension) h0 = 1/8. The

subsequent levels are constructed in the following form

h` = 2−`h0. (3.56)

Then {Ξh}h>0 is a family of (quasi)-uniform, triangular, conforming finite element meshes

on the spatial domain Dh with corresponding nested spaces V` ≡ V h`
g

VL ⊂ . . . ⊂ V` ⊂ V`−1 ⊂ . . . ⊂ V0.

The geometric MLMC has been applied extensively for a variety of cases since the in-

troduction of MLMC, see [10, 66, 76], and [8, 22, 37, 38, 87, 96] specifically for elliptic

problems. While in many cases it is simple to construct the multi-level sequence, the main

difficulty comes from the numerical analysis of the resulting estimators. In [20], Charrier

et al. provided the following theoretical bounds on the multi-level expectation of linear

functionals as QoIs. In our case, the multi-level expectation for the first QoI Q1(u) (3.49)

is

|E[Q`(ω)−Q`−1(ω)]| ≤ C1,12−2`,

while the variance is bounded by

|V[Q`(ω)−Q`−1(ω)]| ≤ E[Q` −Q`−1]2 ≤ C2,12−4`,

where the constants C1,1 and C2,1 are independent of the random variable ω and of the

grid size h.
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h-MLMC with the second order basis functions (p = 2). This is a modified

version of the previous method but, instead of using linear basis functions, we exploit

the use of the second basis functions which increases the smoothness of the discretized

solution.

hp-MLMC. In this method, we define our approximate sequence in such a way that

we increase the polynomial order of basis functions with each mesh refinement. We start

with the same initial mesh setup h0 = 1/8 and p0 = 1. Then the approximation on the

level ` is defined as

h` = 2−`h0 and p` = `+ 1. (3.57)

The method has been proposed in [10] for the compressible Navier-Stokes equations cou-

pled with the discontinuous Galerkin method. The authors combined p-MLMC [78] and

h-MLMC into hp-MLMC and provided a generalization of the complexity.

p-MLMC. In our last multi-level-based method, we obtain the model sequence by

simple incrementing the polynomial order of the basis functions without any further re-

finement in the grid resolution. In this method, we construct our approximation sequence

in this form

h` = const = h0 and p` = `+ 1. (3.58)

This method was proposed in [78] for hyperbolic problems using a high-order discontinuous

Galerkin method. The authors obtained the following theoretical estimations on the multi-

level expectation for hyperbolic problems

|E[Q` −Q`−1]| ≤ C1,42−p` ,

and on the variance

|V[Q` −Q`−1]| ≤ C2,42−2p` .

3.4.3 Numerical results

Figures 3.11a and 3.11b show the absolute value of the mean, |E[Q` − Q`−1]|, and the

variance, V[Q`−Q`−1], for levels ` = 0, . . . , 3. The slope of the function log2 V[Q`−Q`−1]

is about −4 for the h-MLMC with p = 1 and −8 for the h-MLMC with the second order

basis functions (corresponding to βh-MLMC,p=1 ≈ 4 and βh-MLMC,p=2 ≈ 8, respectively, in

Theorem 1). The line for log2 |E[Q` − Q`−1]| has a slope of approximately −2 for the

h-MLMC with p = 1, corresponding to αh,p=1 = 2 in Theorem 1. This implies an O(h2)

convergence rate for the h-MLMC with p = 1, similar to the convergence in L2-norm of

the finite element solution with the linear basis functions.

On the other hand, the slope of the line for log2 |E[Q` − Q`−1]| is about −4 for the

h-MLMC with p = 2 (corresponding to αh,p=2 = 4 in Theorem 1). This implies an O(h4)

convergence rate for the h-MLMC with p = 2, which differs from the convergence in

L2-norm of the finite element solution with the second order basis functions (O(h3)).
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For other two methods, hp-MLMC and p-MLMC, the functions log2 |E[Q` − Q`−1]|
in Figure 3.11b are no longer linear, and thus, the variance reduction rates β are non-

constant. The same results are observed in Figure 3.11a. These two methods have much

higher convergence rate compared to the first two methods.

Figure 3.11e shows that the computational cost increasing factor γ for the geometric

multi-level Monte Carlo method with p = 1 and p = 2 is about 2. For the hp-MLMC the

cost increasing factor is 4. Finally, for the p-MLMC the cost increases at a constant rate

1.5. Thus, for the first quantity of interest (QoI) Q1(u), the variance reduction factor β in

all cases is bigger than the cost increasing factor γ as shown in Figures 3.11b and 3.11e.

This delivers the optimal complexity O(ε−2) (Chapter 2, Theorem 1). The numerical

experiments confirm this complexity as we can see from Figure 3.12a. All the curves lie

on the same line except the curve for the h-MLMC with p = 2, where we use the second

order basis functions on the coarsest level. Hence, the most computations are done on the

coarsest level for all presented multi-level Monte Carlo methods. Overall, the h-MLMC

method with p = 2 would be the worst for this QoI.

For the second QoI Q2(u), the situation is quite different. In Figure 3.11d, we observe

that the variance reduction rate for the h-MLMC with linear basis functions is non-

constant compared to the previous QoI. Moreover the variance increases from level 2

to level 3, which indicates the poor performance of p = 1 for this type of QoI. The

reason behind this behaviour is that the output QoI is a discontinuous function of the

intermediate solution u. As a result, this leads to a larger variance, and hence lower value

for β. In comparison, the variance reduction rate for the hp- and p-MLMC is much greater

than those of two other methods, their computational cost (Figure 3.12b) is slightly higher

than using h-MLMC with p = 2.

In conclusion, all the methods showed similar computational complexity for the first

quantity of interest. For QoIs with discontinuous output functions (in our example, it is

Q2(u)), it seems that the use of higher order methods, such as h-MLMC with p ≥ 2,

will yield better approximation properties and eliminates unnecessary fluctuations in the

mean and variance.
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Figure 3.11 – MLMC numerical results for both QoIs using four different strategies at each
level. (a) and (b): Absolute value of mean and variance for Q1(u). (c) and (d): Absolute
value of mean and variance for Q2(u). (e): Total computational time at each level. (d):
Matrix sizes resulting from the finite element approximation.
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Figure 3.12 – CPU time vs. MSE, BiCGStab solver for four developed MLMC strategies.
Left : Average solution u in the volume V . Right : Average of flux Q2(u).
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3.5 hp-Multi-index Monte Carlo method for elliptic

PDEs

In this section, we propose a novel multi-index Monte Carlo method based on the in-

complete polynomials (Section 3.3.6) in 2D. We compare the results with the standard

geometric MIMC method as well as with MLMC methods described in the previous section

for the same quantities of interest (3.49) and (3.50).

3.5.1 hp-Multi-index Monte Carlo method

We begin with a description of the MIMC methods used to perform numerical experiments.

The first one is the standard multi-index Monte Carlo (hxhy-MIMC) method described

in Chapter 2. This method in its original form was introduced by Haji-Ali et al. [43] for

solving 2D elliptic problems with random coefficients as an extension of MLMC. It uses

directional refinements hx and hy in two spatial directions x and y, which we denote as

h1 := hx and h2 := hy for simplicity. Moreover, we use uniform meshes with standard

bilinear basis functions on rectangular elements to discretize the weak form of the elliptic

PDE. The number of elements in each dimension for level `i ∈ N0 is N `i
i , to give a mesh

size of h`ii = h0N
−`i
i for all i = 0, 1, 2. In other words, given a multi-index ` = (`1, `2), we

use the following number of elements Ni = 8 · 2`i in each direction.

In the second method, we use uniform meshes with complete and incomplete rectangu-

lar finite element basis functions to approximate our test problem. We define a multi-index

` = (`1, `2) in such a way that we refine not only in each dimension but also in each poly-

nomial order x and y. The resulting level ` = (`1, `2) uses

h`ii = h0N
−`i
i and p`ii = `i + 1, i = 0, 1, 2. (3.59)

We denote this method as hxpx, hy, py-MIMC.

3.5.2 Numerical results

Figures 3.13a, 3.13b, and 3.13e illustrate that the assumptions in Theorem 2 (Chapter

2, Section 2.4) are indeed satisfied for the first QoI. Specifically, these figures indicate

that our QoI satisfies the mixed regularity property. Thus, we observe that the variance

reduction rate in each direction is bigger than the cost increase. In addition, Figure 3.15a

provides numerical evidence to this claim and also indicates the optimal complexityO(ε−2)

for the hxhy-MIMC method.

Similar, Figures 3.14a, 3.14b, and 3.14e demonstrate the same results for the hxpx, hypy-

MIMC method. Moreover, the slopes of the lines shown in Figure 3.15a are almost iden-

tical. This implies the same optimal complexity O(ε−2) as in case of the standard MIMC.

In case of the point value QoI (Q2(u)), the mixed regularity property is no longer
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satisfied for the hxhy-MIMC as it is shown in Figures 3.13c and 3.13d. On the other hand,

Figures 3.13c and 3.13d show that the hxpx, hypy-MIMC performs better in this case. As

it can be seen in Figure 3.15b, both methods yield the best optimal complexity O(ε−2)

for this QoI with the standard MIMC method costing slightly more.
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Figure 3.13 – hxhy-MIMC numerical results for both QoIs Q1(u) and Q2(u). (a) and (b):
Logarithmic values of mean and variance for the average solution u in volume V . (c)
and (d): Logarithmic values of mean and variance for the average of flux Q2(u). (e): Total
computational time at each index level (`1, `2) using BiCGStab. (f): Matrix sizes resulting
from finite element discretization.
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Figure 3.14 – hxpx, hypy-MIMC numerical results for both QoIs Q1(u) and Q2(u). (a) and
(b): Logarithmic values of mean and variance for the average solution u in volume V . (c)
and (d): Logarithmic values of mean and variance for the average of flux Q2(u). (e): Total
computational time at each index level (`1, `2) using BiCGStab. (f): Matrix sizes resulting
from finite element discretization.
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Figure 3.15 – CPU time vs. MSE using BiCGStab solver for hxhy-MIMC and hxpx, hypy-
MIMC. Left : Average solution u in the volume V . Right : Average of flux, Q2(u).
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Chapter 4

Multi-level Monte Carlo method for

the convection-diffusion eigenvalue

problem

In this chapter we develop new multi-level Monte Carlo (MLMC) methods based on

the grid refinement and homotopy method for finding the smallest eigenvalues of the

stochastic convection-diffusion operator. The eigenvalue problem is described in the first

section followed by a derivation of a finite element approximation. After that, we discuss

the Rayleigh quotient (RQ) iteration and the implicitly restarted Arnoldi (IRA) method as

the eigenvalue solvers. Then, we apply a homotopy continuation method to the convection-

diffusion operator for solving the eigenvalue problem. Various numerical simulations are

performed in order to show several uses of the developed multi-level Monte Carlo methods

based on different combinations of the mesh and homotopy discretization. We propose two

classes of MLMC method. One class is the geometric MLMC and the other is the homotopy

MLMC. It is known that the convection-diffusion problem requires fine grid discretizations

in order to have a stable solution. As such, for cases with high velocity, we utilize the

solution of the pure diffusion problem as a means of introducing an additional level with a

coarse mesh. We analyze both eigenvalue solvers, the Rayleigh quotient and the implicitly

restarted Arnoldi iterations, in terms of the number of required iterations and the total

computational time for each of these two classes. At last, we give a comparison between

all these methods which includes the standard Monte Carlo method as well.

4.1 Convection-diffusion eigenvalue problem

We consider a convection-diffusion eigenvalue problem with random coefficients: find a

non-trivial eigenpair (λ, u) ∈ C × H1
0 (D;C) with normalized eigenfunction ‖u‖L2 = 1

such that

a(x;ω) · ∇u(x;ω)−∇ · κ(x;ω)∇u(x;ω) = λ(ω)u(x;ω), (4.1)
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in a given probability space (Ω,A,P) and a bounded Lipschitz domain D ∈ Rd for d = 1, 2,

or 3 with boundary Γ for almost all random variables ω ∈ Ω. The velocity a(x;ω) :

D × Ω → Rd and the conductivity κ(x;ω) : D × Ω → R are random processes. The

Dirichlet boundary conditions on the boundary Γ are given by

u|Γ = 0. (4.2)

We also consider velocity a being divergence-free almost surely (a.s.)

∇ · a(x;ω) = 0. (4.3)

The goal is to compute the expectation of the smallest eigenvalue

E[λ(ω)] =

∫
Ω

λ(ω) dω.

Stochastic eigenvalue problems are common in a wide range of scientific and engi-

neering applications. Typical applications include determining the geometry to design a

nuclear reactor for criticality [4, 5, 32, 56, 104], finding the natural frequencies of a given

aircraft or a naval vessel [57], obtaining the spectrum of photonic crystals [28, 35, 79],

computing the ultrasonic resonance frequencies to detect the presence of gas hydrates [73],

analyzing the elastic properties of crystals with the use of rapid measurements [74, 75, 88],

or calculating acoustic vibrations [18, 48, 97]. In particular, stochastic convection-diffusion

equations are used to describe simple cases of turbulent [31, 60, 77, 94] or subsurface

flows [95, 101].

4.2 Finite element discretization

The eigenvalue problem (4.1) should be discretized, because the solution in the analytical

form is not available for arbitrary geometries and parameters. As such, we apply the stan-

dard finite element method in order to obtain an approximation of the desired eigenpairs

(λ, u). But before deriving the finite element approximation, we first establish certain

assumptions about our random field κ(ω) for almost all ω ∈ Ω.

Assumption 1. κ(·;ω) ∈ L∞(D);

Assumption 2. 0 < κmin ≤ κ(x;ω) ≤ κmax <∞.

4.2.1 Weak formulation

The derivation of the finite element approximation of the convection-diffusion eigenvalue

problem is similar to the elliptic problem described in Chapter 3. For that, we multiply
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Equation (4.1) by a test function v ∈ H1
0∫

D

a(x;ω) · ∇u(x)v(x) dx−
∫
D

∇ · κ(x;ω)∇u(x)v(x) dx = λ(ω)

∫
D

u(x)v(x) dx. (4.4)

To decrease the derivative order of the solution u(x), we perform integration by parts,

noting that we have no Neumann boundary condition term since u(x) = 0 on Γ, so we

obtain∫
D

a(x;ω) · ∇u(x)v(x) dx+

∫
D

κ(x;ω)∇u(x) · ∇v(x) dx = λ(ω)

∫
D

u(x)v(x) dx. (4.5)

We rewrite the variational form in a more convenient way: find a non-trivial eigenpair

(λ(ω), u(ω)) ∈ C×H1
0 with B(u, u) = 1 such that

A(u(ω), v;ω) + C(u(ω), v;ω) = λ(ω)B(u(ω), v;ω) ∀v ∈ H1
0 (4.6)

where

A(u(ω), v;ω) :=

∫
D

κ(x;ω)∇u(x) · ∇v(x) dx, (4.7)

C(u(ω), v;ω) :=

∫
D

a(x;ω) · ∇u(x)v(x) dx, (4.8)

B(u(ω), v;ω) :=

∫
D

u(x)v(x) dx. (4.9)

We consider in addition to the primal form its dual eigenvalue problem for the future er-

ror analysis: find a non-trivial dual eigenpair (λ∗(ω), u∗(ω)) ∈ C×H1
g with B(u∗(ω), u∗(ω)) =

1 such that

A(w, u∗(ω);ω) + C(w, u∗(ω);ω) = λ∗(ω)B(w(ω), u∗(ω);ω) ∀w ∈ H1
0 . (4.10)

The primal and dual eigenvalues are related to each other via λ(ω) = λ∗(ω).

The variational eigenvalue problem (4.6) admits a countable set of eigenvalues which

can be represented as a sequence of their absolute values

λ1(ω) < |λ2(ω)| ≤ |λ3(ω)| ≤ . . . . (4.11)

Theorem 5 (Krein-Rutman Theorem). If the linear operator (4.1) is compact then the

smallest eigenvalue is real and simple (its algebraic multiplicity m = 1). Moreover, there

exists a constant ρ(ω) > 0, such that

|λ2(ω)− λ1(ω)| ≥ ρ(ω), (4.12)

meaning that the distance between the two smallest eigenvalues of the convection-diffusion
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operator is constant.

Proof. See [36, 47].

An example is presented in Figure 4.1 using the finite element method with triangular

elements for different mesh sizes. As Figure 4.1 shows, the ratio of the two smallest

eigenvalues converges to some constant ρ.
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Figure 4.1 – Ratio between the two smallest eigenvalues using the finite element approx-
imation on the unit domain for mesh sizes from h = 2−2 to h = 2−7. The convection-
diffusion problem is with a = [50, 0]T and κ = 1.

4.2.2 Finite element matrices

As usual, we approximate the infinite-dimensional spaces H1
g and H1

0 by finite-dimensional

subspaces V h
g and V h

0 , respectively (Chapter 3). Then, the resulting discrete variational

problem is to find non-trivial primal and dual eigenpairs (λ(ω), uh(ω)) ∈ C × V h
0 and

(λ∗(ω), u∗h(ω)) ∈ C× V h
0 such that

A(uh(ω), vh(ω)) + C(uh(ω), vh(ω)) = λh(ω)B(uh(ω), vh(ω)) ∀vh ∈ V h, (4.13)

and

A(wh, u
∗
h(ω);ω) + C(wh, u∗h(ω);ω) = λ

∗
h(ω)B(wh, u

∗
h(ω);ω) ∀wh ∈ V h. (4.14)

The domain D is also discretized into elements Dk. Recall that the right and left eigen-

functions u∗h, uh and the test functions v and w can be represented as linear combinations

in the finite spaces V h
g and V h

0 ,

uh(x) =
n∑
j=1

qjψj(x), u∗h(x) =
∑
j=1

q∗jψj(x),

vh(x) =
n∑
i=1

qvi ψi(x), wh(x) =
n∑
i=1

q∗,wi ψi(x).

(4.15)
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Then the discrete primal and dual formulations for the right and the left eigenfunctions

can be written in matrix form

A(ω)q = λ(ω)Mq, qHA(ω) = λ(ω)qHM, (4.16)

where AH(ω) denotes the transpose conjugate of the matrix A(ω). The matrix elements

are defined as

Aij(ω) =
∑
k

∫
Dk

κ(x;ω)∇ψj(x)∇ψi(x) dx+
∑
k

∫
Dk

a(x;ω) · ψi(x)∇ψj(x) dx, (4.17)

and

Mij =
∑
k

∫
Dk

ψj(x)ψi(x) dx, i, j = 1 . . . n. (4.18)

The homogeneous Dirichlet boundary condition allows us to reduce the size of the

resulting matrices by n− n0 and to reduce the computational cost of iterative eigenvalue

solvers by simply eliminating the n0 equations from the linear system corresponding to

the boundary conditions.

4.2.3 Finite element approximation error

Unlike the case of the elliptic PDE (3.1), the finite element method for the convection-

diffusion problem has stability issues in the convection-dominated regions if the element

size h does not capture all necessary information about the flow. The Peclet number

(sometimes called the mesh Peclet number) [103]

Pe(x;ω) =
|a(x;ω)|h
2κ(x;ω)

(4.19)

shows how small the mesh size h should be in order to have a stable solution using the

Galerkin approximation.

To illustrate this we consider the following example: let a(x;ω) = [50; 0]T and κ(x;ω) =

1 with boundary condition u(x;ω)|∂D = 0. Then, we solve the convection-diffusion prob-

lem using the finite element method with linear basis functions on triangular elements.

Figure 4.2 shows the finite element solutions uh obtained using different mesh sizes where

h indicates the mesh size in both directions (h = hx = hy). Coarse grid solutions (Fig-

ures 4.2a and 4.2b) produce non-physical oscillations as a result of having large Peclet

numbers compared to the solutions obtained using finer grids (Figures 4.2c and 4.2d).

This instability is related to the smallest eigenvalue associated with the eigenvalue prob-

lem A (Eq. 4.16) itself as it is not simple and real but complex. As it can be seen from

Figure 4.3 for an example with high velocity a = [100, 0]T and a single realization of

random field κ(x), the smallest eigenvalue λh is complex for a coarse grid discretization

with mesh size h = 2−3 (Figure 4.3a). At the same time, the smallest eigenvalue obtained
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on a finer mesh is real and simple (Figure 4.3b). An analysis for 1D convection-diffusion

problem is given in [68, 84].

(a) h = 2−3, |Pe| = 3.125. (b) h = 2−4, |Pe| = 1.5625.

(c) h = 2−5, |Pe| = 0.78125. (d) h = 2−6, |Pe| = 0.390625.

Figure 4.2 – FE eigenfunction approximations uh with homogeneous boundary conditions
for different mesh sizes, a(x) = [50, 0]T and κ(x) = 1 where Pe is the Peclet number. (a)
and (b): unstable solutions. (c) and (d): stable solutions.
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Figure 4.3 – Eigenvalue spectrum (the first 20) of the convection-diffusion operator for
a single realization of random field κ(x) with a = [100, 0]T approximated by the finite
element method. Left: Unstable solution obtained on mesh size with h = 2−3. Right:
Stable solution obtained on mesh with h = 2−6.
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Similarly to the continuous problem (4.6), for each ω the discrete problem (4.13) has

a finite set of eigenvalues which approximate the first Mh = dimVh eigenvalues of (4.6)

for sufficiently small h

λh,1(ω), λh,2(ω), . . . , λ(ω)h,Mh
.

Lemma 2. Let λj(ω) j ≥ 1 be an eigenvalue of the convection-diffusion operator (4.11)

with algebraic multiplicity m. Since the finite element approximation converges in norm,

m eigenvalues λh,j(ω), . . . , λh,m+j(ω) converge to λ and the error is∣∣∣∣∣λj(ω)− 1

m

m+j∑
i=j

λh,i(ω)

∣∣∣∣∣ ≤ Cλ(ω)h2, (4.20)

provided the FE approximation satisfies the stability condition on the Peclet number,

|Pe| ≤ 1. Cλ(ω) is a constant which depends only on the operator of the eigenvalue

problem.

Proof. See [14].

By Lemma 2 and Krein-Rutman theorem 5 we have a simple relation for the smallest

eigenvalue λ1(ω) (4.11) taking λh ≡ λh,1 and λ(ω) ≡ λ1(ω) [53]

|λ(ω)− λh(ω)| ≤ C(ω)h2, (4.21)

which ensures the convergence of our finite element approximation in the context of the

geometric multi-level Monte Carlo method. Figure 4.4 shows the eigenpath of the smallest

eigenvalue obtained on the mesh sequence from the coarsest mesh with the size h = 2−2

to the finest one with h = 2−6 for the problem 4.1 with a = [50, 0]T and κ = 1.
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Figure 4.4 – Eigenpaths of the smallest eigenvalue of the unit domain with a = [20, 0]T

and κ = 1 obtained using the FE method with different mesh sizes h` = 2−2+` starting
with h0 = 2−2.
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4.3 Eigenvalue problem in the matrix formulation

Our finite element approximation leads to a generalized eigenvalue problem in the matrix

form

A(ω)q = λ(ω)Mq and AH(ω)q = λ(ω)MHq, (4.22)

where the mass matrix M ∈ Rn×n is symmetric and positive-definite whereas the left-

hand-side matrix A(ω) ∈ Rn×n is nonsymmetric. We also note that the mass matrix M

is deterministic and depends only on the mesh discretization and as such its assembly

should be done only once for each grid discretization.

A variety of eigenvalue solvers can be applied to solve a generalized eigenvalue problem.

This includes the simple power iteration, QR algorithm, subspace iterations, etc. A rea-

sonable choice of an eigenvalue solver should be able to exploit the underlying properties

of the eigenvalue problem. In our case, the eigenvalue problem is not only non-Hermitian

but also is large and sparse. Also, we are interested only in computing an approximation

of the smallest eigenvalue, instead of looking for the whole spectrum of the problem. For

our purposes, we consider here only two eigenvalue solvers, the Rayleigh quotient itera-

tion [24, 61] and implicitly restarted Arnoldi iteration [64], as they both able to compute

the smallest eigenvalue of a nonsymmetric matrix.

4.4 Rayleigh quotient iteration

The Rayleigh quotient iteration is a simple but powerful method for finding eigenvalues

and eigenvectors. Its ability to seek only one eigenvalue at a time and to work with any

matrix structures gives its preference compared to other eigenvalue solvers. The Rayleigh

quotient iteration greatly benefits from the sparsity of the matrices as it requires the

solution of linear systems of equations at each iteration. The method itself was suggested

by Lord Rayleigh in 1894 [83] for solving a quadratic eigenvalue problem of oscillations of

a mechanical system. Various extensions were developed since then for more complicated

cases such as for symmetric generalized eigenvalue problems by Crandall and Temple [24],

nonsymmetric cases by Ostrowski [81], nonsymmetric generalized cases by Lancaster [61],

and many others.

At its core, the method calculates the Rayleigh quotient of the estimate of the eigen-

value for two given vectors, and then uses it as the new shift of the shifted inverse power

method at each iteration, whereas in the shifted inverse power method, the same shift is

used at each iteration. The Rayleigh quotient for our generalized eigenvalue problem (4.22)

is defined as

R(w, r) =
rHA(ω)w

rHMw
, (4.23)

where r and w are the left and right eigenvectors of our eigenvalue problem, respectively.

Then, having initial approximations of the right and left eigenfunctions ξh,0, ηh,0 as well
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as of the eigenvalue λh,0, an iterative process can be constructed through the use of the

shifted inverse power method. A variant of such iteration is presented in Algorithm 2

which is a slightly modified version of the algorithm proposed in [61]. Note, as our eigen-

value of interest is real-valued, the iterative process does not involve any complex-valued

arithmetic. The main computational cost comes from the inversion of the ill-conditioned

real-valued matrices. Fortunately, the convergence rate of the Rayleigh quotient iteration

is at least quadratic as stated in the following lemma.

Lemma 3. [24, 81] Suppose we have an approximation λh,0 to the eigenvalue of interest

λh(ω). Then if |λh,0 − λh(ω)| is sufficiently small and defining |λh,i − λh(ω)| = ∆(ω), the

Rayleigh quotient iteration sequence λh,i i = 0, 1, 2, . . . converges to λh(ω) quadratically

|λh,i+1 − λh(ω)| = O(∆2). (4.24)

Proof. See Crandall [24].

We have a similar lemma for a generalized eigenvalue problem.

Lemma 4. Suppose we have approximations ξh,0 and ηh,0 to the left and right eigenvectors

of interest ξh(ω) and ηh(ω). Then if ‖ξh,0− ξh(ω)‖ and ‖ηh,0− ηh(ω)‖ are both sufficiently

small, then the sequences ξh,i and ηh,i i = 0, 1, 2, . . . of the Rayleigh quotient method

converge cubically to the left and right eigenvectors ξh(ω) and ηh(ω) at least quadratically

‖ξh,i − ξh(ω)‖ = O(∆2
ξ),

‖ηh,i − ηh(ω)‖ = O(∆2
η),

(4.25)

and the sequence of estimated eigenvalues λh,i converges with the same quadratic rate

|λh,i+1 − λh(ω)| = O(∆2
λ). (4.26)

Proof. See Lancaster [61].

In the Rayleigh quotient iteration the approximate eigenvalue pushes the solution of

the linear system into its null space (λiM−A→ 0 as i→∞, see line 5 in Algorithm 2).

The matrix λiM−A is getting more and more ill-conditioned. As a consequence, the use

of a direct solver may be preferable to the use of an iterative solver as the iterative solver

may lead to numerical instability and to arithmetic overflow. One of these two criteria

can be used to stop the iteration

‖Aξi − λiMξi‖ ≤ εrq, (4.27)

and

|λi − λi−1| ≤ εrq. (4.28)
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Algorithm 2 Rayleigh Quotient Algorithm [61]

1: Given initial parameters ξ0, η0, λ0, εrq, maxiter
2: while ‖Aξi − λiMξi‖ > εrq and i ≤ maxiter do
3: Normalize ξi ← ξi‖ξi‖−1

2

4: Normalize ηi ← ηi‖ηi‖−1
2

5: Solve [λiM − A]ξi+1 = ξi
6: Solve [λiM − A]Hηi+1 = ηi
7: Compute λi ← ηHi Aξi[η

H
i Mξi]

−1

8: i := i+ 1
9: end while

Tables 4.1 and 4.2 show the results for the convergence of the Rayleigh quotient it-

eration for the discretized convection-diffusion operator with the velocity a = [20, 0]T

and the conductivity κ(x) as a log-uniform random field (Figure 3.2). The results in Ta-

ble 4.1 show that the practical convergence rate of the Rayleigh quotient iteration is at

least quadratic as established in Lemma 3 and 4. Table 4.2 indicates that the use of the

Rayleigh quotient algorithm with an initial guess obtained from the final output of the

Rayleigh quotient iteration on a coarse mesh takes at least one iteration less compared to

the use of a random initial vector instead. Although this saving in the computational time

is insignificant in terms of the computational complexity, this still can be applied in the

context of the multi-level Monte Carlo method to accelerate the computations. Indeed,

we need to calculate the difference between approximate eigenvalues obtained from two

different mesh discretizations at each level for the same Monte Carlo sample.

This difference in the number of iterations as well as in the total computational time

becomes more clear when we consider a problem with a higher velocity and on a finer mesh.

Figure 4.5 shows an example with velocity a = [50; 0]T and κ = 1. The computational

time for the Rayleigh quotient iteration with a random initial guess is 130 s while the

total time for the same problem but with the final output from a coarser mesh used as

the initial guess is 31 s which includes the computational times from both coarse and fine

meshes.

Table 4.1 – Rayleigh quotient iteration for one sample for the problem (4.1) with a =
[20; 0]T , h = 2−5, random initial vectors, λ0 = 100.

Iteration |λh − λh,i| ‖Aξi − λh,iMξi‖
0 2.683e+01 7.685e+00
1 2.575e-02 2.694e-03
2 7.915e-08 2.600e-06
3 5.400e-13 7.994e-12
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Table 4.2 – Rayleigh quotient iteration for one sample for the problem 4.1 with a = [20; 0]T ,
h = 2−5 using previous solution obtained from mesh discretization h = 2−4 as an initial
guess.

Iteration |λh − λh,i| ‖Aξi − λh,iMξi‖
0 1.640e-01 2.399e-02
1 1.317e-10 5.300e-08
2 2.558e-13 2.018e-15
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Figure 4.5 – Residuals of the Rayleigh quotient iteration for the convection-diffusion
operator (4.1) with a = [50, 0], κ = 1 on the unit domain using the FE method on a mesh
with h = 2−7. The initial guess in the second case (black line) was projected from the FE
solution on the mesh size h = 2−6.

4.5 Implicitly restarted Arnoldi method

For completeness we discuss the basic Arnoldi method first. The Arnoldi method efficiently

computes a specified number of eigenpairs (u, λ) of large and sparse matrices with a given

tolerance. The method was developed by Arnoldi in 1951 [3] to translate a matrix into its

Hessenberg form. For more information, see [11, 64, 82, 85, 86, 89, 91, 92]. In the case of

Hermitian matrices, the Arnoldi algorithm becomes Lanczos’ iterative solver [62].

First, we consider a generalized eigenvalue problem and convert it to standard form

Au = λMu⇔ Su = λu, (4.29)

where M is symmetric positive semi-definite and S = M−1A.

The method constructs an orthogonal basis Vm of the Krylov subspace produced by

Arnoldi’s iteration

Kk(S,v1) = span{v1,Sv1,S
2v1, . . . ,S

k−1v1}, (4.30)
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where v1 is an initial vector. For that, we impose a Galerkin condition

(w,Su− uθ) = 0, ∀w ∈ Kk(S,v1). (4.31)

If this condition is satisfied then the vector u ∈ Kk(S,v1) is called a Ritz vector and the

value θ is called a Ritz value. Then, the Arnoldi factorization is computed after k steps

SVk = VkHk + fke
T
k , (4.32)

where VT
k Vk = Ik, the matrix Hk ∈ Rk×k is an upper Hessenberg matrix, and the vector

fk = p̃(S)v1 is the residual with p̃(S) as a polynomial of degree not exceeding k − 1. The

matrix Hk = VT
k SVk forms the orthogonal projection of S onto the Range of Vk. The

orthonormal basis Vk of the Krylov subspace Kk can be obtained by various procedures,

one such is shown in Algorithm 3. After that, the approximate eigenvalues and eigenvectors

can be obtained from this factorization. The Arnoldi factorization can also be represented

in an alternative way

SVk = (Vk,vk+1)

(
Hk

βke
T
k

)
, (4.33)

where βk = ‖fk‖ and vk+1 = 1
βk

fk, then the vectors v1,v2, . . . ,vk form an orthonomal

basis Vk of the Krylov subspace Kk (4.30).

If Hks = sθ then the vector u = Vks satisfies the following relation

‖Su− uθ‖ = ‖(SVk −VkHk)s‖ = |βkeTk s|, (4.34)

where |βkeTk s| is called the Ritz estimate for the Ritz pair (u, θ). Obviously, the smaller

this estimate the better the approximations of the desired eigenvalues are. The use of the

Ritz estimate allows us to extract the information about the numerical accuracy of an

approximate eigenpair without explicitly computing the residual ‖Su− uθ‖.

Algorithm 3 The k-step Arnoldi Factorization [64]

1: Input: (S,v1)
2: v1 = v/‖v1‖, w = Sv1, α1 = vH1 w;
3: f1 ← w − α1v1; V0 ← (v1), H1 ← (α1);
4: for j = 1, 2, 3, . . . , k − 1 do
5: βj = ‖fj‖, vj+1 ← fj/βj;

6: Vj+1 ← (Vj,vj+1), Hj ←
(

Hj

βje
T
j

)
;

7: w← Avj+1;
8: h← VH

j+1w, fj+1 ← w −Vj+1h;
9: Hj+1 ← (Hj,h);

10: end for

In finite precision arithmetic, the computed columns Vj do not form the orthogonal

basis exactly and as such, special techniques should be considered when dealing with it.
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Another issue of the Arnoldi method is its memory cost as it requires to store all the

basis vectors. In addition, the cost of finding eigenvalues of the Hessenberg matrix is

O(k3) at the kth step. An alternative approach was proposed by Lehoucq [64] in 1995

which mitigates both the computation and storage problems. In this method the k-step

Arnoldi factorization is restarted using the implicit QR scheme. An implicitly restarted

Arnoldi method requires only matrix-vector products and the solution of the mass matrix

at each iteration compared to the Rayleigh quotient iteration where at each iteration it

is necessary to solve two nonsymmetric matrices.

In the implicitly restarted Arnoldi method, an Arnoldi factorization of length k is

extended to a length m by additional p steps to obtain

SVm = VmHm + fmeTm, (4.35)

then p shifted QR steps are applied implicitly on Hk+p to obtain

SV+
m = V+

mH+
m + fmeTmQ, (4.36)

where V+
m = VmQ, H+

m = QHHmQ, and Q = Q1Q2 . . .Qp. The matrices Qj are orthog-

onal and associated with the shifts µj each. Moreover, the first k− 1 entries of the vector

eTmQ are zero. After that, the last p columns are discarded delivering a k-step Arnoldi

factorization as all necessary information about the desired eigenvalues is contained in

this k-step factorization:

SV+
k = V+

k H+
k + f+

k eTk , (4.37)

with the resulting residual f+
k = V+

mek+1β̂k + fmσ.

The starting vector v1 is replaced by (S− µjI)v1 after applying an implicit shift µj

v1 ← ψ(S)v1 with ψ(λ) =

p∏
j=1

(λ− µj). (4.38)

Thus, the polynomial ψ(λ) should filter unwanted information from the starting vector

v1 by either damping of unwanted eigenvectors or amplifying the wanted eigenvectors.

As such, various techniques exist for choosing these p shifts. One of the most successful

schemes is the use of exact shifts in which the eigenvalues of the Hessenberg matrix Hm

are divided into two disjoint sets. The spectrum of the Hessenberg matrix Hk will be the

eigenvalues of interest, σ(Hk) = {λ1, λ2, . . . , λk}.
The implicitly restarted Arnoldi iteration stops when

‖fm‖|eTms| ≤ max(εM‖Hm‖, ε · |θ|), (4.39)

indicating that the Ritz pair (û, θ) is converged where εM is machine precision.

Unfortunately, the convergence rate is difficult to determine for a generalized eigen-
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Algorithm 4 The Implicitly Restarted Arnoldi Algorithm [64]

1: Input: (S,V,H, f) with an m-step Arnoldi factorization SVm = VmHm + fmeTm
2: for l = 1, 2, 3, . . . until convergence do
3: Compute σ(Hm) and select set of m−k = p shifts µ1, µ2, . . . , µp based upon σ(Hm)

or other information;
4: qH ← eTm;
5: for j = 1, 2, . . . , p apply implicitly a QR step: do
6: Factor [Q,R] = qr(Hm − µjI)
7: Hm ← QHHmQ
8: Vm ← VmQ
9: q← qHQ

10: end for
11: fk ← vk+1β̃k + fmσk
12: Vk ← Vm(1 : n, 1 : k)
13: Hk ← Hm(1 : k, 1 : k)
14: Beginning with the k-step Arnoldi factorization SVk = VkHk + fke

T
k apply p ad-

ditional steps of the Arnoldi process to obtain a new m-step Arnoldi factorization
SVm = VmHm + fmeTm.

15: end for

value problem. Moreover, the rate depends not only on the structure of the eigenvalue

problem but also on such parameters as the dimension of the Krylov subspace and the

number of the eigenvalues of interest.

Figures 4.6-4.8 show the behaviour of the Arnoldi method for the discretized convection-

diffusion operator (4.1) on the unit domain with the velocity a = [20, 0]T and a random

conductivity κ. We use ARPACK [65] as an implementation of the implicitly restarted

Arnoldi method which is based on Algorithm 4. The numerical results were obtained on

the grid sequence from h = 2−2 to h = 2−5 using 100 Monte Carlo samples. Figure 4.6

shows that the larger the Krylov subspace dimension, the less the number of matrix-vector

products is required to find the smallest eigenvalue for the mesh discretization of h = 2−2

and h = 2−3. But for the finer grid discretizations, h = 2−4 and h = 2−5, the number of

matrix-vector products is no longer monotonically decreasing as for the coarser meshes.

Similarly, the number of Arnoldi iterations Sv which also includes the number of solving

linear systems as Sv = M−1Av is decreasing with the increase of the Krylov subspace

size as shown in Figure 4.7. As a result, the overall computational time has almost the

same behaviour (Figure 4.8) as the plot of matrix-vector products.

4.6 Homotopy method

Many approaches exist to produce a solution without non-physical oscillations at a cheaper

cost compared to the use of a very fine grid. For example, in adaptive finite element

methods a mesh is refined only in the regions of high Peclet number and of the internal

and boundary layers. Another technique is the use of a test space different from the trial

50



3 4 5 6 7 8 9
10

15

20

25

30

35

Krylov subspace dimension, m

M
at

ri
x
-v

ec
to

r
p

ro
d

u
ct

s

(a) h = 2−2

10 20 30 40

50

100

150

200

250

Krylov subspace dimension, m

M
at

ri
x
-v

ec
to

r
p

ro
d

u
ct

s

(b) h = 2−3

20 40 60 80 100

500

1,000

1,500

Krylov subspace dimension, m

M
at

ri
x
-v

ec
to

r
p

ro
d

u
ct

s

(c) h = 2−4

20 40 60 80 100

1,000

2,000

3,000

4,000

5,000

Krylov subspace dimension, m

M
at

ri
x
-v

ec
to

r
p

ro
d

u
ct

s
(d) h = 2−5

Figure 4.6 – Average number of matrix-vector products Sv of the implicitly restarted
Arnoldi method as a function of Krylov subspace dimensionm using the FE approximation
for the convection-diffusion problem (4.1) with a = [20; 0]T on the unit domain using 102

Monte Carlo samples.
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Figure 4.7 – Average number of Arnoldi iterations of the implicitly restarted Arnoldi
method as a function of Krylov subspace dimension m using the FE approximation for
the convection-diffusion problem (4.1) with a = [20; 0]T on the unit domain using 102

Monte Carlo samples.
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Figure 4.8 – Average computational time in ms of the implicitly restarted Arnoldi method
as a function of Krylov subspace dimension m using the FE approximation with a =
[20; 0]T on the unit domain using 102 Monte Carlo samples.

space such as in Petrov-Galerkin finite element formulations, e.g. the Galerkin/Least-

squares method [30], the Streamline/Upwind Petrov-Galerkin method (SUPG) [16], etc.

In the discontinuous Galerkin method [9, 27] non-physical oscillations are eliminated via

discontinuous basis functions. Another approach is to decompose the solution into two

components: a coarse-scale component and a fine-scale component, as in the variational

multiscale method [54].

Here we employ a different methodology which is based on a homotopy continuation

method. In [19] the homotopy method was adapted to the convection-diffusion eigenvalue

problem with the use of adaptive finite element methods. The authors also provided the

estimates on the convergence rate for the homotopy parameter to compute the smallest

eigenvalue. As such, we aim to investigate its usefulness in the elimination of non-physical

solutions in the context of the multi-level Monte Carlo method on coarse levels.

In general, the homotopy method is formed by the use of some initial operator L0 with

spectrum close enough to the original operator L and then, a continuation is applied [71]

H(t) = (1− f(t))L0 + f(t)L for 0 ≤ t ≤ 1, (4.40)

with a function f : [0; 1] → [0; 1] and f(0) = 0, f(1) = 1. For our convection-diffusion

operator (4.1) for t = 0 we have

H(0) = L0 = −∇κ(x;ω)∇u(x;ω), (4.41)
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which represents the case of the elliptic problem (3.1) and

H(1) = L = a(x;ω) · ∇u(x;ω)−∇ · κ(x;ω)∇u(x;ω), (4.42)

is the operator of interest.

As for the function f(t), we use a simple linear function f(t) = t, although other choices

are possible, and it is also discretized at different values of t, so the homotopy (4.40 in

this case becomes

H(t) = −∇ · κ(x;ω)∇u(x;ω) + tia(x;ω) · ∇u(x;ω) = λ(ω, t)u(x;ω) in D. (4.43)

The following lemma with proof is from [19] and aims to establish the error of the

homotopy (4.40).

Lemma 5. The homotopy error of the exact eigenvalues λ(ω, t = 1) of the homotopy H(t)

for problem (4.1) with divergence-free a a.s. is

|λ(ω, 1)− λ(ω, t)| ≤ (1− t)‖a(x;ω)‖∞(|u(ω, t)|H1 + |u∗(ω, t)|H1) ∀t ∈ [0; 1], (4.44)

where | · |H1 is the Sobolev semi-norm and u∗(ω, t) is the dual solution.

Proof. Denote u(·) := u(ω, ·) and λ(·) := λ(ω, ·), then

(λ(1)− λ(t))(B(u(1), u∗(1)) + B(u(t), u∗(t))− B(u(1)− u(t), u∗(1)− u∗(t)))

=(λ(1)− λ(t)) (B(u(1), u∗(t)) + B(u(t), u∗(1)))

=λ(1)B(u(1), u∗(t)) + λ∗(1)B(u(t), u∗(1))− λ∗(t)B(u(1), u∗(t))− λ(t)B(u(t), u∗(1))

=(1− t)C(u(1), u∗(t)) + (1− t)C(u(t), u∗(1)).

Because velocity a(ω) is divergence-free a.s. we have

C(u(1), u∗(t)) = −C(u∗(t), u(1)).

Using the Hölder inequality ‖fg‖1 ≤ ‖f‖p‖g‖q with 1/p+1/q = 1 we obtain the following

result

C(u(t), u∗(1))− C(u∗(t), u(1)) ≤ ‖a(ω) · ∇u(t)‖‖u∗(1)‖+ ‖a(ω) · ∇u∗(t)‖‖u(1)‖

≤ ‖a(ω)‖∞(|u(t)|H1 + |u∗(t)|H1).

Figure 4.9 shows the eigenpath of the smallest eigenvalue for the homotopy parameter

from 0 to 1 using triangular elements with mesh size h = 2−7 for the problem with

velocity a = [100, 0]T and the conductivity κ = 1 on the unit domain. As it can be

seen, the eigenvalue changes exponentially with the homotopy parameter t. Therefore,
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the homotopy step ∆t = t` − t`−1 should become increasingly smaller towards the last

level in a multi-level sequence, so that the multi-level difference becomes smaller as well.

At the same time, the homotopy parameter t should satisfy the stability condition of the

mesh Peclet number, |Pe| = t|a|h/2κ < 1.
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Figure 4.9 – Eigenpaths of the smallest eigenvalue for the homotopy parameter t ∈ [0; 1]
obtained using the finite element method with mesh size h = 2−7 for a = [100, 0]T and
κ = 1 on the unit domain.

4.7 Homotopy multi-level Monte Carlo method

We explore several strategies of the multi-level Monte Carlo method related to the ap-

proximation errors and computational costs. The first error comes from the finite element

discretization, εFEM . The second error and the computational cost are of the eigenvalue

iterative solvers, εs, CRQ, CIRA. And the last approximation error is of the homotopy

method, εt.

The simplest strategy is the usual geometric multi-level Monte Carlo using a finite el-

ement sequence {Ξh} of (quasi)-uniform, shape-regular, conforming meshes on the spatial

domain D, in which we double the grid resolution with level `

E[λL] = E[λh0 ] +
L∑
`=1

E[λh` − λh`−1
], (4.45)

where λh0 is an approximate eigenvalue obtained on the coarse mesh with grid size h = h0

using finite element discretization, λh` is an approximate eigenvalue obtained using mesh

with size hi. For simplicity, we write λh` as λ` omitting index h, λ` ≡ λh` .

Corollary 1 (Order fo convergence). For ω ∈ Ω, let h > 0 be sufficiently small then

let λ`(ω) := λh/2(ω) and λ`−1(ω) := λh(ω) be the Galerkin (4.13) approximation to the
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convection-diffusion operator (4.1) of the smallest eigenvalue λ(ω). The expectation of

their difference is bounded by

∣∣E[λ`(ω)− λ`−1(ω)]
∣∣ ≤ C4,12−2`, (4.46)

while the variance is bounded by

V[λ`(ω)− λ`−1(ω)] ≤ C4,22−4`. (4.47)

Here C41, C42 are independent of ω, h and `.

Proof. From Theorem 2 we have

E[|λ(ω)− λ`(ω)|] ≤ C4,1h
2,

therefore

∣∣E[λ(ω)− λ`−1(ω)]
∣∣ =

∣∣E[λ`(ω)− λ(ω) + λ(ω)− λ`−1(ω)]
∣∣

≤ E[|λ(ω)− λ`(ω)|] + E[|λ(ω)− λ`−1(ω)|]

≤ C̃4,1(2−2` + 2−2(`−1)) = C4,12−2`.

The variance reduction rate is

V[λ`(ω)− λ`−1(ω)] ≤ E[
(
λ`(ω)− λ`(ω)

)2
] ≤ C2

4,12−4`.

The second strategy is to employ a different homotopy parameter at each mesh dis-

cretization level to satisfy the stability condition on the finite element approximation. The

multi-level sequence in this case is {(t = 0, h = h0), (t = t1, h = h1), . . . , (t = 1, h = hL)},
where (t`, h`) are model parameters for level ` and t is the homotopy parameter (4.40).

The resulting MLMC estimator is

E[λL] = E[λt0,h0 ] +
L∑
i=1

E[λti,hi − λti−1,hi−1
]. (4.48)

Both of these methods are employed with the Rayleigh quotient and implicitly restarted

Arnoldi eigenvalue solvers alongside the finite element method using triangular elements

with linear basis functions.
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4.8 Numerical results

In this section, we consider two numerical examples to investigate the properties of the

multi-level Monte Carlo (MLMC) methods. In both cases, our quantity of interest is the

smallest eigenvalue of the stochastic convection-diffusion operator (4.1) in the unit domain

D = [0; 1] × [0; 1]. The diffusion κ(x;ω) is a random variable modelled as a log-uniform

random field constructed through the convolution of 25 i.i.d. uniform random variables

log κ(x;ω) =
25∑
i=1

ωik(x− ci), (4.49)

with exponential smoothing kernels k(x− ci) = exp[−25
2
‖x− ci‖] where ci are the kernel

centers placed uniformly on a 5× 5 grid in the domain D. As in Chapter 3, the random

seed is the same for all numerical experiments presented in this section. A realization of

such field κ is shown in Figure 4.10.

For each example we apply four variants of the multi-level Monte Carlo method. The

first strategy is the use of MLMC with the implicitly restarted Arnoldi method. Then we

change the eigenvalue solver to the Rayleigh quotient iteration and compare both methods

in terms of the computational cost. After that, we perform the same tests but utilizing

the homotopy continuation method for each eigenvalue solver, to see if any improvements

arise. Finally, we compare the efficiency between all these strategies including the classic

Monte Carlo method.

ARPACK [65] is used as an implementation of the implicitly restarted Arnoldi method

while the Rayleigh quotient method was developed in C++ with the use of the Eigen

library [42] as the solver of linear systems for non-symmetric matrices. We use the Umf-

PackLU function which is included in the SuiteSparse library [26] to perform the LU

decomposition with permutations for solving linear systems of equations. As a method

of generating pseudo-random samples, we use the std::mt19937 function of the standard

C++ library.

In Table 4.3 the matrix sizes ñ are given for the mesh sequence, h−1 = 22, 23, . . . , 27,

resulting from the finite element discretization using triangular elements with linear basis

functions. The matrix dimensions are the same for all numerical examples. The number

of nodes ñ increases approximately quadruply with level. Table 4.4 shows optimal Krylov

subspace dimensions for the Arnoldi method for the matrices obtained from the finite

element approximation. The parameters are chosen based on the performance for each

grid discretization shown at the end of Section 4.5 (Figures 4.6-4.8).

4.8.1 Problem I

Let a = [20; 0]T . Then the mesh sequence starts from h = 2−3 in order to satisfy the

stability condition and ends at h = 2−7. The stopping criteria in the Rayleigh quotient
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Figure 4.10 – A log-uniform random field κ(x, ω) for a single realization ω with 25 expo-
nential kernels placed uniformly as a grid 5× 5.

Table 4.3 – Degrees of freedom resulting from the finite element approximation for the
mesh sequence used in the simulations.

Level, ` h−1 Number of nodes, ñ
0 23 49
1 24 225
2 25 961
3 26 3969
4 27 16129

Table 4.4 – Krylov subspace dimensions for the matrices used in the simulations coupled
with the Arnoldi method.

Level, ` h−1 Krylov subspace size, m
0 23 20
1 24 40
2 25 70
3 26 70
4 27 100

iteration is until the residual ‖Au − λMu‖ ≤ 10−12. The implicitly restarted Arnoldi

method stops when the Ritz vectors ‖fm‖|eTms| ≤ max(10−12‖Hm‖, 10−12 · |θ|), where Hm

is a Hessenberg matrix Hm ∈ Rm×m at step m, θ is the approximate eigenvalue.

Table 4.5 shows various output parameters such as the average number of matrix-

vector products, of the number of iterations, and of the computational time, for the

implicitly restarted Arnoldi method in the MLMC setting using 104 samples at each

level `. As can be seen, the average number of matrix-vector products as well as Arnoldi

iterations increases with the matrix size. As is shown in Figure 4.11, the rate of increase

of matrix-vector products (Figure 4.11c) is almost linear whereas the rate of increase of
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number of Arnoldi iterations (Figure 4.11d) is harder to determine as it is about 0.4 from

the level 0 to 2 and then the rate becomes linear. On the other hand, the rate of increase of

the computational time itself (Figure 4.11e) is easier to understand and is asymptotically

γ ≈ 3 (see Table 4.6) indicating an O(h−3) cost. From both Table 4.6 and Figure 4.11a we

observe that the convergence rate of the mean α corresponds to the theoretical estimate

(Lemma 2) which is approximately 2 (blue line). As a result, the variance reduction rate

β (Figure 4.11b and Table 4.6) is about 4 which is approximately the square of the mean

convergence rate. That way, we have that the variance reduction rate, O(h4), is larger than

the cost increasing rate, O(h−3). This corresponds to the best case scenario (Theorem 1

and Equation (2.15)) in which the use of the MLMC method is justified for finding the

smallest eigenvalue of the convection-diffusion operator (4.1).

Table 4.5 – Average values of the Arnoldi method: matrix-vector products Sv, number of
iterations, and computational time in ms using multi-level Monte Carlo simulations for
104 samples at each level ` for Problem I with a = [20; 0]T .

Level, ` h−1 Sv Number of iterations Computational time
0 23 101.6 9 2.0113 ms
1 24 255.8 11.7 28.865 ms
2 25 583.2 15.6 351.19 ms
3 26 1195.8 33.0 2 925 ms
4 27 2455.3 57.9 29 144 ms

Table 4.6 – Multi-level Monte Carlo results using 104 samples on each level ` for Problem
I using the implicitly restarted Arnoldi method with a = [20; 0]T , showing the expectation
value, |E[λ` − λ`−1]|, variance of the difference, V[λ` − λ`−1], total computational time in
ms, and their convergence rates, α, β, γ (see Theorem 1).

Level, ` h−1 |E[λ` − λ`−1]| V[λ` − λ`−1] Time α β γ
0 23 1.386e+02 5.561e+02 20 113 ms
1 24 2.804e+00 2.632e+00 288 653 ms 5.63 7.72 3.84
2 25 6.498e-01 1.648e-01 3 511 929 ms 2.11 4.00 3.60
3 26 1.590e-01 1.030e-02 29 251 296 ms 2.03 4.00 3.05
4 27 3.952e-02 6.437e-04 291 448 142 ms 2.00 4.00 3.32

Similar results were obtained by using the Rayleigh quotient iteration as the eigenvalue

solver as shown in Table 4.7. Obviously, the variance and mean decay rates, α and β, are

the same as in the case of the implicitly restarted Arnoldi method while the cost increase

rate is slightly different having on average γRQ ≈ 3 compared to γIRA ≈ 3.5 using the

Arnoldi method. As in the previous case the use of MLMC is fully justified according to

the Theorem 1. Although the average γRQ < γIRA and the computational time of each level

for the Rayleigh quotient iteration is lower except on the zeroth level ` = 0, the use of the

implicitly restarted Arnoldi method would be more preferable as the main contribution

in the overall computational cost in both methods comes from the coarsest level ` = 0

and the Arnoldi method is twice cheaper in that case as can be seen from Figure 4.15.
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Figure 4.11 – MLMC using 104 samples at each level to find the smallest eigenvalue of
Problem I with a = [20; 0]T using the finite element approximation for the sequence of
meshes, h = 2−3 . . . 2−7 and the Arnoldi method as the eigenvalue solver. (a) expectation
of the eigenvalue E[λ`] (black line) and of the difference between two levels |E[λ` − λ`−1]|
(blue line). (b) variance of the eigenvalue V[λ`] (black line) and of the difference V[λ`−λ`−1]
(blue line). (c) average number of matrix-vector products of computing the expectation
of differences E[λ` − λ`−1]. (d) average number of Arnoldi iterations of computing the
expectation of differences. (e) average computational time of one sample.

Obviously, the combination of these two methods in the multi-level Monte Carlo setting

would yield even a smaller computational cost but the improvement will be by a constant
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only.

Table 4.7 – Multi-level Monte Carlo results using 104 samples on each level ` for Problem
I with a = [20; 0]T using the Rayleigh quotient method, showing the expectation value,
|E[λ` − λ`−1]|, variance of the difference, V[λ` − λ`−1], total computational time in ms,
and their convergence rates, α, β, γ (see Theorem 1).

Level, ` h−1 |E[λ` − λ`−1]| V[λ` − λ`−1] Time α β γ
0 23 1.386e+02 5.561e+02 44 460 ms
1 24 2.804e+00 2.632e+00 274 194 ms 5.63 7.72 2.62
2 25 6.498e-01 1.648e-01 1 545 742 ms 2.11 4.00 2.50
3 26 1.590e-01 1.030e-02 13 894 066 ms 2.03 4.00 3.17
4 27 3.952e-02 6.437e-04 174 273 148 ms 2.00 4.00 3.64
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Figure 4.12 – Multi-level Monte Carlo method using 104 samples at each level to find the
smallest eigenvalue of Problem I with a = [20; 0]T using the FE approximation for the
sequence of meshes, h = 2−3 . . . 2−7 and the Rayleigh quotient iteration as the eigenvalue
solver. Left: Average number of Rayleigh quotient iterations used to obtain the difference
λ` − λ`−1 for one sample at each level `. Right: Average computational time to solve the
problem for one sample.

Table 4.8 shows the results of the homotopy multi-level Monte Carlo simulations with

the Rayleigh quotient iteration. The homotopy sequence was generated by the formula

t` = 1−1/4` with the final homotopy parameter t`=4 = 1. That way the distance between

two homotopy parameters t`−1 and t` is becoming smaller towards the last level, so the

convergence of the mean of differences E[λ` − λ`−1] and variances V[λ` − λ`−1] can be

ensured (Figure 4.13a and Figure 4.13b). The actual convergence rates of both the mean

and variance experience a drop from the first level to the second one but after that the

difference monotonically increases with the level, while the averages of their rates are

α ≈ 2.01 for the mean of the difference and β ≈ 3.65 for the variance of the difference.

Compared to Figure 4.12a (the Rayleigh quotient iteration without the homotopy), the

number of iterations across all levels except the last one is greater and the method also

experiences greater variance. Because the initial guess on level ` comes from the final
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output of level ` − 1 with a different homotopy parameter t, the amount of iterations

required to solve the problem increases compared to the same setup but without the use

of the homotopy. The computational cost increase rate is similar across all levels with

γ ≈ 3 (Figure 4.14b). Overall, the variance reduction rate is larger than the cost increase

rate except between the first and the second levels and between the last two levels. This

means that the main computational cost will be spent on the zeroth and second levels.

But the actual computational complexity depends on the length of the mesh sequence:

the more mesh levels, the lengthier the homotopy sequence is itself.

Table 4.8 – Homotopy multi-level Monte Carlo results using 104 samples on each level ` for
Problem I with a = [20; 0]T using the Rayleigh quotient method showing the expectation
value, |E[λ` − λ`−1]|, variance of the difference, V[λ` − λ`−1], total computational time in
ms, and their convergence rates, α, β, γ (see Theorem 1).

` h−1 t |E[λ` − λ`−1]| V[λ` − λ`−1] Time α β γ
0 23 0 1.244e+02 7.310e+02 38 984 ms
1 24 0.75 4.509e+00 1.413e+01 278 354 ms 4.78 5.69 2.84
2 25 0.9375 4.322e+00 3.409e+00 1 857 123 ms 0.06 2.05 2.73
3 26 0.984375 1.303e+00 2.718e-01 16 223 628 ms 1.25 3.64 3.12
4 27 1 4.678e-01 2.925e-02 205 043 525 ms 1.95 3.21 3.66

Next, the same homotopy sequence was used but now in pair with the implicitly

restarted Arnoldi method (Figure 4.13) instead of the Rayleigh quotient iteration. As

expected, the mean and variance exhibits the same inconsistency with both eigenvalue

solvers. On the other hand, the computational cost rate is more stable with the average

γ ≈ 3.12 as can be seen from Figure 4.13e which is less than for the case without the use

of the homotopy and with the same eigenvalue solver where γ ≈ 3.5. Although the mean

and variance reduction rates, Figure 4.13a and Figure 4.13b, respectively, are significantly

different from the case without the homotopy method, the behavior of the plots of the

number of matrix-vector (Figure 4.13c) products as well as of the number of Arnoldi itera-

tions (Figure 4.13d) is similar to the case without the homotopy (Figures 4.11c and 4.11d).

Finally, Figure 4.15 plots CPU time vs. mean square error for all presented MLMC

methods. The lines plotted in blue and red indicate the use of the implicitly restarted

Arnoldi method and the Rayleigh quotient iteration, respectively, while the lines plotted

with squared marks indicate the use of the homotopy method and the lines plotted with

triangular marks indicate no homotopy. Overall, MLMC with the Arnoldi method outper-

forms all other methods as shown in Figure 4.15. MLMC with the Rayleigh quotient iter-

ation works just slightly worse. The computational cost of the homotopy MLMC method,

on the other hand, grows worse because the variance of the difference V[λ` − λ`−1] is far

greater for the last two levels compared to the simple MLMC. Nevertheless, all presented

methods give a computational advantage having an O(ε−2) complexity in comparison to

the standard Monte Carlo method which has an O(ε−5) = O(ε−3×ε−2) (cost of one sample

O(ε−3) multiplied by O(ε−2) samples required to achieve the targeted error) complexity.
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Figure 4.13 – Homotopy multi-level Monte Carlo method using 104 samples at each level `
to find the smallest eigenvalue of Problem I with a = [20; 0]T using the FE approximation
for the sequence of meshes, h = 2−3 . . . 2−7 and the Arnoldi method as the eigenvalue
solver. (a) expectation of the eigenvalue E[λ`] (black line) and of the difference between
two levels |E[λ` − λ`−1]| (blue line). (b) variance of the eigenvalue V[λ`] (black line) and
of the difference V[λ` − λ`−1] (blue line). (c) average number of matrix-vector products
of computing the expectation of differences E[λ` − λ`−1]. (d) average number of Arnoldi
iterations of computing the expectation of differences. (e) average computational time of
one sample.
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Figure 4.14 – Homotopy MLMC using 104 samples at each level ` to find the smallest
eigenvalue of Problem I with a = [20; 0]T using the FE approximation for the sequence of
meshes, h = 2−3 . . . 2−7 and the Rayleigh quotient iteration as the eigenvalue solver. Left:
Average number of Rayleigh quotient iterations used to obtain the difference λ` − λ`−1

for one sample at each level `. Right: Average computational time to solve the problem
for one sample.
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Figure 4.15 – CPU time vs. mean square error of MLMC for Problem I using two different
eigenvalue solvers.
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4.8.2 Problem II

Now we investigate the behaviour of the previously developed multi-level Monte Carlo

methods in the context of high velocity. Setting the velocity a = [50; 0]T will make the first

two levels unusable as the solution on these levels will exhibit non-physical oscillations.

Thus, the mesh sequence for the MLMC method begins with the mesh size h = 2−5 and

ends with h = 2−7, in total using only three levels compared to the previous sequence with

the total of five levels. In tests with the homotopy MLMC method we use only the Rayleigh

quotient iteration as the eigenvalue solver because, as shown in the previous section, the

Rayleigh quotient iteration performs slightly faster than the implicitly restarted Arnoldi

method for all levels. As the condition number of the generated matrices becomes worse

with a higher velocity, we increase the tolerance εrq = 10−9, to reduce the number of

Rayleigh quotient iterations needed to solve the eigenvalue problem.

Table 4.9 demonstrates the results for the MLMC method with 104 samples using

the Arnoldi iteration as the eigenvalue solver. As in the case of the lower velocity, the

variance reduction rate which is β ≈ 4 is higher than the cost increase rate which is

γ ≈ 3.2. The difference between the mean and variance reduction rates on the first two

levels (Figure 4.16) is even greater in comparison with the use of the same eigenvalue solver

for Problem I (Table 4.6) which is αI ≈ 5.63 vs. αII ≈ 9.91 and βI ≈ 7.72 vs. βII ≈ 13.7.

Therefore, the complexity of the method is O(ε−2), although it becomes slower compared

to the problems with lower velocity.

Table 4.9 – Multi-level Monte Carlo results using 104 samples on each level ` for Problem
II with a = [50; 0]T using the implicitly restarted Arnoldi method showing expectation
value, |E[λ` − λ`−1]|, variance of the difference, V[λ` − λ`−1], total computational time in
ms, and their convergence rates, α, β, γ (see Theorem 1).

Level, ` h−1 |E[λ` − λ`−1]| V[λ` − λ`−1] Time α β γ
0 25 2.176e+02 2.303e+02 2 901 605 ms – – –
1 26 2.261e-01 1.686e-02 26 308 271 ms 9.91 13.7 3.18
2 27 5.705e-02 1.040e-03 247 639 813 ms 1.99 4.02 3.23

Similar results were obtained with the use of the MLMC method coupled with the

Rayleigh quotient iteration. Here we observe from Table 4.10 that the average cost in-

crease rate γ ≈ 3.18 which is less than the variance reduction rate as well. As in the

previous case, the complexity is O(ε−2). Overall, the total computational cost of the

MLMC method with the Rayleigh iteration is better than the cost of the MLMC method

with the Arnoldi method, although this difference is only by a constant. We also note that

for Problem I the result was reversed, with MLMC using the Arnoldi iteration yielding a

better computational cost.

Now we use the homotopy method with the MLMC in hope of reducing the compu-

tational cost by introducing an additional coarse level. First, we use the same generating

sequence of homotopy parameters as in Problem I, t = 1− 1/4`. This allows us to include

64



Table 4.10 – MLMC results using 104 samples on each level ` for Problem II with a =
[50; 0]T using the Rayleigh quotient method showing the expectation value, |E[λ`−λ`−1]|,
variance of the difference, V[λ`−λ`−1], total computational time in ms, and their conver-
gence rates, α, β, γ (see Theorem 1).

Level, ` h−1 |E[λ` − λ`−1]| V[λ` − λ`−1] Time α β γ
0 25 2.176e+02 2.303e+02 2 048 706 ms – – –
1 26 2.261e-01 1.686e-02 14 592 552 ms 9.91 13.7 2.83
2 27 5.705e-02 1.040e-03 175 312 392 ms 1.99 4.02 3.59
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Figure 4.16 – Multi-level Monte Carlo method using 104 samples at each level to find the
smallest eigenvalue of Problem I with a = [50; 0]T using the FE approximation for the
sequence of meshes, h = 2−4 . . . 2−7 and the Rayleigh quotient iteration as the eigenvalue
solver. (a) expectation of the eigenvalue E[λ`] (black line) and of the difference between
two levels |E[λ`−λ`−1]| (blue line). (b) variance of the eigenvalue V[λ`] (black line) and of
the difference V[λ`− λ`−1] (blue line). (c) average number of Rayleigh quotient iterations
of computing the differences. (d) average computational time to find the difference of one
sample.

the level with mesh size h = 2−4 (but not a coarser one) while satisfying the stability

condition. Compared to Problem I, each mesh discretization has a different homotopy

parameter as a result of starting MLMC with the mesh size h = 2−4 instead of h = 2−3.

Table 4.11 illustrates the convergence of the mean and variance of homotopy MLMC with
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the Rayleigh quotient iteration. The variance reduction rate across the first two levels is

less than the cost increase rate, β ≈ 1.15 and γ ≈ 3.30, and on the last level β ≈ 3.78

and γ ≈ 3.56. According to Theorem 1, the overall cost of homotopy MLMC is, then,

O(ε−2−(γ−β)/α) = O(ε−4.88) which is almost of the same cost as the standard Monte Carlo

method (O(ε−5)).

Table 4.11 – Homotopy MLMC results using 104 samples on each level for Problem II
with a = [50; 0]T using the Rayleigh quotient method showing expectation value, |E[λ` −
λ`−1]|, variance of the difference, V[λ` − λ`−1], total computational time in ms, and their
convergence rates, α, β, γ (see Theorem 1).

` h−1 t |E[λ` − λ`−1]| V[λ` − λ`−1] Time α β γ
0 24 0 1.199e+02 6.689e+02 223 361 ms – – –
1 25 0.75 5.543e+01 2.703e+02 2 295 934 ms 1.11 1.30 3.36
2 26 0.9375 3.088e+01 7.218e+01 21 604 532 ms 0.38 1.01 3.23
3 27 1 1.166e+01 9.770e+00 255 320 523 ms 1.86 3.78 3.56

Next, we try to utilize the possibility of using the solution of the pure diffusion problem

with t = 0. For that, we start with solving the problem with zero convection on the zeroth

level. Then, on the subsequent levels we solve the full convection-diffusion problem with

t = 1. The multi-level sequence is {(t = 0, h = 2−4), (t = 1, h = 2−5), (t = 1, h = 2−6), (t =

1, h = 2−7)}. Table 4.12 shows the results for such sequence of levels. We see from this

table that the mean of the difference becomes smaller with each level, but the jump in

the variance of the difference from the zeroth to the first level indicates the absence of the

convergence in variance for these two levels. Because the difference between the solution

of the diffusion and convection-diffusion problems becomes too significant, the method is

not applicable for the use with high velocities.

Table 4.12 – MLMC results using 104 samples on each level l for Problem II with a =
[50; 0]T using the Rayleigh quotient method showing the expectation value, |E[λ`−λ`−1]|,
variance of the difference, V[λ`−λ`−1], total computational time in ms, and their conver-
gence rates, α, β, γ (see Theorem 1).

` h−1 t |E[λ` − λ`−1]| V[λ` − λ`−1] Time α β γ
0 24 0 1.199e+02 6.689e+02 223 361 ms – – –
1 25 1 9.769e+01 7.762e+02 2 048 706 ms 0.29 -0.21 3.20
2 26 1 2.261e-01 1.686e-02 14 592 552 ms 8.75 15.49 2.83
3 27 1 5.705e-02 1.040e-03 175 312 392 ms 1.99 4.01 3.59

In the next test, we remove the level containing the mesh size h = 2−4 and introduce

the pure diffusion problem on the level with the mesh size h = 2−5. As the pure diffusion

operator is self-adjoint and the derived matrix is symmetric, the time spent on solving

the eigenvalue problem is approximately twice smaller compared to the full convection-

diffusion eigenvalue problem. The resulting sequence of levels is {(t = 0, h = 2−5), (t =

1, h = 2−5), (t = 1, h = 2−6), (t = 1, h = 2−7)}. Table 4.13 shows that the mean difference

as in the previous case decreases across all levels but the variance of the difference still
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shows no convergence on the first two levels. As in the previous case, unfortunately, the

application of the pure diffusion problem is not beneficial.

Table 4.13 – MLMC results using 104 samples on each level ` for Problem II with a =
[50; 0]T using the Rayleigh quotient method showing the expectation value, |E[λ`−λ`−1]|,
variance of the difference, V[λ`−λ`−1], total computational time in ms, and their conver-
gence rates, α, β, γ (see Theorem 1).

` h−1 t |E[λ` − λ`−1]| V[λ` − λ`−1] Time α β γ
0 25 0 1.187e+02 6.541e+02 1 391 730 ms – – –
1 25 1 9.880e+01 7.617e+02 2 048 706 ms 0.26 -0.21 0.55
2 26 1 2.261e-01 1.686e-02 14 592 552 ms 8.77 15.46 2.83
3 27 1 5.705e-02 1.040e-03 175 312 392 ms 1.99 4.02 3.59
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Figure 4.17 – Homotopy MLMC method using 104 samples at each level to find the
smallest eigenvalue of Problem I with a = [50; 0]T using the FE approximation for the
sequence of meshes, h = 2−4 . . . 2−7 and the Rayleigh quotient iteration as the eigenvalue
solver. The homotopy sequence is {0, 0.75, 0.9385, 1}. (a) expectation of the eigenvalue
E[λ`] (black line) and of the difference between two levels |E[λ` − λ`−1]| (blue line). (b)
variance of the eigenvalue V[λ`] (black line) and of the difference V[λ`−λ`−1] (blue line). (c)
average number of Rayleigh quotient iterations of computing the differences. (d) average
computational time to find the difference of one sample.

Figure 4.18 summarizes the total computational cost vs. mean square error for MLMC
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with the Rayleigh quotient iteration, MLMC with the implicitly restarted Arnoldi method,

and homotopy MLMC with the Rayleigh quotient iteration presented in Table 4.11. This

time the difference between the MLMC with the Arnoldi and Rayleigh quotient methods

is insignificant compared to the results presented in Figure 4.15 with a lower velocity.

The computational complexity of the geometric MLMC with both eigenvalue solvers is

O(ε−2). On the other hand, the total cost of the homotopy MLMC is unclear and it seems

that for higher velocities the convergence becomes worse than for lower velocities. As the

mesh sequence starts with a much finer mesh for high velocities, the overall cost of the

multi-level Monte Carlo method increases and is equal to the computational cost of the

coarsest level, although it outperforms the standard Monte Carlo method which depends

only on the finest mesh for the targeted MSE.
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Figure 4.18 – CPU time vs. mean square error of MLMC for Problem II with a = [50, 0]T .

In the next chapter, we explore another possibility of introducing coarse mesh models.
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Chapter 5

Multi-level Monte Carlo method

with the streamline-upwind

Petrov-Galerkin method

In the previous chapter we considered incorporating the standard Galerkin approximation

into the multi-level Monte Carlo setting for computing the smallest eigenvalue of the

convection-diffusion problem with a random conductivity. The developed methods showed

good approximation properties when solving the problem with low velocity. However, for

problems with high velocities, the finite element method requires a much finer mesh, as

the solutions obtained on coarser meshes exhibit non-physical oscillations. As a result, the

starting level of the MLMC method contains a very fine model which takes a significant

amount of time to solve. As such, various remedy strategies based on the homotopy

continuation method were proposed, which later deemed unsuitable as showed by the

numerical simulations.

In this chapter, we consider an alternative approach which is based on the Petrov-

Galerkin finite element approximation. Compared to the standard Galerkin method, a

stabilization parameter is used to resolve the oscillations properly. While the trial and

test spaces are the same in the standard FE scheme, in the Petrov-Galerkin method they

are different. The stabilization parameter used in the Petrov-Galerkin method usually

considers a measure of the local element as well as the local Peclet number. Here we

use the streamline-upwind/Petrov-Galerkin (SUPG) formulation in the multi-level Monte

Carlo simulations.

The chapter itself is rather short as the main preliminaries, such as the stochas-

tic convection-diffusion problem, the eigenvalue solver, and the multi-level Monte Carlo

method were introduced in the previous chapter. We introduce the SUPG scheme with

its function spaces in Section 5.1. Then, we present the numerical results of the SUPG

MLMC method for high velocities and show the superiority of the developed method

compared to the FE MLMC method.
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5.1 Streamline-upwind Petrov-Galerkin method

In this section we introduce the streamline-upwind/Petrov-Galerkin method. We impose

the same assumptions on the random field κ(ω;x) that are described (A1 and A2) in

Section 4.2.

The streamline-upwind/Petrov-Galerkin method was introduced by Brooks and Hughes

in 1982 [16] as a means to stabilize the finite element solution. Since then, the method

has been a subject of extensive research and been used in various applications [12, 23,

45, 50, 52, 59]. The SUPG method can be derived in several ways. Here, we consider its

formulation through adding a stabilization term to the bilinear form. An equivalent weak

formulation can be obtained by defining a test space with additional test functions in

the form v̂(x) = v(x) + p(x), where v(x) is a standard test function in the finite element

method and p(x) is an additional discontinuous function.

5.1.1 Weak formulation

The residual of the convection-diffusion equation is

R(u(ω);ω) = a(x;ω)·∇u(ω)−∇·κ(ω)∇u(ω)−λ(ω)u(ω) = L(u(ω);ω)−λ(ω)u(ω), (5.1)

where L(·;ω) is the differential operator. The stabilization techniques are applied for each

element interior only, because the residual R(u(ω);ω) is computed only on the finite

elements. A general formulation of the stabilized finite element methods can be defined

in the following form∫
D

a(ω) · ∇u(x)v(x) dx−
∫
D

κ(x;ω)∇u(x)∇v(x) dx

+
∑
k

∫
Dk

τkR(u(ω);ω)P(v;ω) dx = λ(ω)

∫
D

u(x)v(x) dx,

(5.2)

where P(v;ω) is some operator and τk is the stabilization parameter acting in the kth

finite element.

Various definitions exist for the operator P(v;ω), such as the Galerkin/Least squares

(GLS) method [51], the Streamline-Upwind/Petrov-Galerkin (SUPG) method [15, 16, 30],

the Unusual Stabilized Finite Element (USFEM) method [7], etc.

For the SUPG method the stabilization operator P(v;ω) defined as

P(v;ω) = a(ω) · ∇v. (5.3)

Substituting Equations (5.1) and (5.3) into (5.2) gives the streamline-upwind/Petrov-
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Galerkin weighted residual formulation∫
D

a(ω) · ∇u(ω)v dx−
∫
D

∇ · κ(ω)∇u(ω)∇v dx

+
∑
k

∫
Dk

τk(a(ω) · ∇u(ω)− κ(ω)∇u(ω)− λ(ω)u(ω))(a(ω) · ∇v) dx

= λ(ω)

∫
D

u(ω)v dx.

(5.4)

5.1.2 Finite element matrices

After approximation of the weak form (Eq. 5.4) by usual finite-dimensional subspaces,

we obtain the discrete variational problem: find non-trivial primal and dual eigenpairs

(λ(ω), uh(ω)) ∈ C× V h
g and (λ∗(ω), u∗h(ω)) ∈ C× V h

g such that

A(uh, vh;ω) + C(uh(ω), vh;ω)

+
∑
k

∫
Dk

τk(a(ω) · ∇uh −∇ · κ(ω)∇uh − λ(ω)uh)(a(ω) · ∇vh)dx

= λ(ω)b(uh, vh;ω), (5.5)

A(wh, u
∗
h(ω);ω) + C(wh, u∗h(ω);ω)

+
∑
k

∫
Dk

τk(a(ω) · ∇wh −∇ · κ(ω)∇wh − λ∗(ω)wh)(a(ω) · ∇u∗h)dx

= λ∗(ω)b(wh, u
∗
h;ω). (5.6)

The discrete primal and dual formulations for the right and left eigenfunctions in the

matrix form after substituting the eigenfunctions uh, wh and test functions vh, u
∗
h with

their corresponding linear combinations (Eq. (4.15), Sec. 4.2.2) in the finite spaces V h
g

and V h
0 are

Ã(ω)q = λ(ω)M̃(ω)q, qHÃ(ω) = λ(ω)qHM̃(ω), (5.7)

with matrix elements defined as

Ãij =
∑
k

∫
Dk

κ(ω)∇ψj∇ψi dx+
∑
k

∫
Dk

a(ω) · ψj∇ψi dx,+
∑
k

∫
Dk

τka(ω) · ψi∇ψj dx,

(5.8)

M̃ij =
∑
k

∫
Dk

ψjψi + τka(ω) · ∇ψjψi dx, i, j = 1 . . . n. (5.9)

In general, the problem of finding an optimal stabilization parameter τK is open and

can be defined by multiple ways [59]. We employ the following stabilization parameter [12,
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45]

τk(ω) =
hk

2|a(ω)|
(coth |Pek|(ω)− 1

|Pek|(ω)
), (5.10)

where Pek denotes the local Peclet mesh number. Though, in practical simulations the

asymptotic expressions are used

τk =


hk

2|a|(ω) , P ek(ω) ≥ 1,
h2k

12κ(ω) , P ek(ω) < 1,
(5.11)

where Pek ≡ |Pek|. It follows that the right-hand side matrix M̃ is no longer symmetric

and is random compared to the mass matrix in the standard Galerkin method.

Figure 5.1 shows numerical results for SUPG with velocity a = [50, 0]T and conduc-

tivity κ = 1 on the mesh sequence starting from h = 2−3 to h = 2−6. From Figure 5.1 it

can be seen that the solutions obtained on the grids (Figures 5.1a and 5.1b) with Peclet

numbers |Pe| ≥ 1 are smooth and do not have any non-physical oscillations as it is in the

case with the standard Galerkin method.

(a) h = 2−3, P e = 3.125. (b) h = 2−4, P e = 1.5625.

(c) h = 2−5, P e = 0.78125. (d) h = 2−6, P e = 0.390625.

Figure 5.1 – SUPG eigenfunction approximations uh with homogeneous boundary con-
ditions for different mesh sizes, a(x) = [50, 0]T and κ(x) = 1 where Pe is the Peclet
number.
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Figure 5.2 shows the first 20 smallest eigenvalues for a single realization of random field

κ(x) with velocity a = [100, 0]T on the mesh with size h = 2−3. The standard Galerkin

method has non-physical oscillations in the solution for such coarse mesh and its smallest

eigenvalue is a complex pair, as mentioned in Section 4.2.3. The SUPG method, on the

other hand, has a real smallest eigenvalue, indicating a stable solution.
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(a) SUPG eigenvalues.
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Figure 5.2 – Eigenvalue spectrum (the first 20) of the convection-diffusion operator for a
single realization of random field κ(x) with a = [100, 0]T approximated by SUPG (Left)
and FEM (Right) with mesh size h = 2−3.

5.2 Numerical results

We present two numerical examples, in which we demonstrate the application of the

streamline-upwind/Petrov-Galerkin method for cases with high velocities. As usual, the

domain D = [0; 1]× [0; 1] is the square unit and the conductivity κ(x;ω) is modelled as a

log-uniform random field described in Section 3.2.

First, we consider Problem II presented in the previous chapter in section 4.8.2. Then,

we increase velocity and change its direction, so that the standard finite element approx-

imation would require a very fine mesh in order to produce a solution without spurious

oscillations. As shown by numerical results in Chapter 4, the Rayleigh quotient and im-

plicitly restarted Arnoldi iterations have a similar computational complexity O(h−3) but

the Rayleigh quotient iteration was slightly faster for both Problem I and II. This is why

we employ here only the Rayleigh quotient solver.

5.2.1 Problem II

The problem setup is described in Chapter 4 in Section 4.8.2. Figure 5.3 illustrates the

numerical results for the streamline-upwind/Petrov-Galerkin method in the multi-level-

Monte Carlo setting using the Rayleigh quotient as the eigenvalue solver using 104 random

samples at each level. Figure 5.3c reports the average number of the Rayleigh quotient
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iterations at each level. The number of iterations required to solve the problem is decreas-

ing with level, almost obtaining the solution at two or less iterations on the last levels

with little or no variance. As it can be seen from Figures 5.3a and 5.3b, the mean and

variance are decreasing steadily. The mean reduction rate is α ≈ 2 while the variance

reduction rate is β ≈ 4. At the same time, the cost increasing rate is γ ≈ 2.8 on average,

with the last level having γ ≈ 3.8. Therefore, the computational complexity of the SUPG

MLMC is O(ε−2) because β > γ (Theorem 1) across all levels.
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Figure 5.3 – Multi-level Monte Carlo method using 104 samples at each level to find the
smallest eigenvalue of Problem II with a = [50; 0]T using the SUPG approximation for the
sequence of meshes, h = 2−3 . . . 2−7 and the Rayleigh quotient iteration as the eigenvalue
solver. (a): Expectation of the eigenvalue E[λ`] (black line) and of the difference between
two levels |E[λ`−λ`−1]| (blue line). (b): Variance of the eigenvalue V[λ`] (black line) and of
the difference V[λ`−λ`−1] (blue line). (c): Average number of Rayleigh quotient iterations
for computing the differences. (d): Average computational time for the difference of one
sample.

Figure 5.4 shows the CPU time vs. MSE. The black lines indicate SUPG MLMC, while

the red lines correspond to the standard finite element (FE) MLMC method. We observe

that the complexity of FE MLMC and SUPG MLMC has the same rate O(ε−2). However,

they differ by a constant and SUPG MLMC is approximately ten times cheaper. This is

because the SUPG MLMC method allows one to form a multi-level sequence with much
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coarser levels than FE MLMC.
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Figure 5.4 – CPU time vs. mean square error of FE MLMC and SUPG MLMC for Problem
II with a = [50, 0]T .

5.2.2 Problem III

In this experiment we increase the velocity and change its direction to have a = [100, 100]T .

It is also known as convection skew to the mesh. As a consequence, the solution may

experience cross-wind diffusion, allowing to form some discontinuities in the direction of

flow [103]. Both our methods are based on the continuous Galerkin method, as such they

are not able to model actual discontinuities in the solution. The standard Galerkin may

have non-physical oscillations everywhere in the solution on coarse meshes. SUPG, on the

other hand, may have spurious oscillations localized in narrow regions on the same coarse

meshes.

With limited capacity resources, we can compute FE MLMC with only two levels of

meshes, essentially making it two-level Monte Carlo with the following sequence {h0 =

2−6, h1 = 2−7}. Figure 5.5 shows the numerical results for FE MLMC using 104 samples

at each level `. The absolute value of mean of difference |E[λ` − λ`−1]| as well as the

expectation E[λ`] are shown by blue and black lines in Figure 5.5a, respectively. Similarly,

their variance is shown in Figure 5.5b. The average number of Rayleigh quotient iterations

is illustrated in Figure 5.5c with average cost of a sample shown in Figure 5.5d. The slope

of the mean of difference α is approximately 13.7, while the variance reduction rate is

β ≈ 17.1. The cost increase rate is γ ≈ 2.73. The average number of iterations on the

level zero is about 8 with some deviation, but it decreases rapidly to approximately 2 on

the next level. The overall computational complexity of FE MLMC, therefore, is O(ε−2)

asymptotically as β > γ, though the mesh sequence starts with a finer mesh compared to

Problem I and II.
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Figure 5.5 – Two-level Monte Carlo method using 104 samples at each level l to find the
smallest eigenvalue of Problem III with a = [100; 100]T using the finite element approx-
imation for the sequence of meshes, h = 2−6, 2−7 and the Rayleigh quotient iteration as
the eigenvalue solver. (a): Expectation of the eigenvalue E[λ`] (black line) and of the dif-
ference between two levels |E[λ` − λ`−1]| (blue line). (b): Variance of the eigenvalue V[λ`]
(black line) and of the difference V[λ`−λ`−1] (blue line). (c): Average number of Rayleigh
quotient iterations for computing the differences. (d): Average computational time for the
difference of one sample.

We now examine the behaviour of the SUPG MLMC method with the Rayleigh quo-

tient iteration for the same case. The SUPG MLMC mesh sequence is the following

{h0 = 2−3, h1 = 2−4, h2 = 2−5, h3 = 2−6, h4 = 2−7}. Figure 5.6 presents the numerics

for SUPG MLMC with the Rayleigh quotient iteration using 104 samples at each mesh

level. Figure 5.6a shows the expectation of difference |E[λ`−λ`−1]| at each level. The mean

decreases with the rate α ≈ 3.89 which is larger than for the previous case (αII ≈ 1.98).

However, Figure 5.6b illustrates that the variance of difference V[λ`−λ`−1] has a different

behaviour compared to in Problem II (Figure 5.3b). The variance increases from level

zero to level one and then it remains almost the same on the level two. After that, the

variance V[λ3 − λ2] decreases abruptly from ≈ 219 to ≈ 23. Therefore, the SUPG MLMC

sequence should start with level three (h = 2−5) in order to get benefits of the MLMC

method. In Figure 5.6c the average number of Rayleigh quotient iterations is shown at
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each level `. Only the lowest level experiences large deviation in the number of iterations

while other levels have small variance. The average computational time (Figure 5.6d)

changes at different rates having on average γ ≈ 3.

0 1 2 3 4
2−5.00

2−2.00

21.00

24.00

27.00

210.00

α ≈ 3.89

Mesh level, `

M
ea

n
,
E[
λ
`
−
λ
`−

1
]

|E[λ` − λ`−1]|
E[λ`]

(a) Mean of difference.

0 1 2 3 4
2−1.00

24.00

29.00

214.00

219.00

Mesh level, `

V
ar

ia
n
ce

,
V

[λ
`
−
λ
`−

1
]

V[λ` − λ`−1]
V[λ`]

(b) Variance of difference.

0 1 2 3 4

2−4.00

2−2.00

20.00

22.00

24.00

Mesh level, `

It
er

at
io

n
s

(c) Rayleigh quotient iterations.

0 1 2 3 4

2−2.00

22.00

26.00

210.00

214.00

γ ≈ 3.8

Mesh level, `

T
im

e,
m

s

(d) Computational time.

Figure 5.6 – Multi-level Monte Carlo method using 104 samples at each level to find the
smallest eigenvalue of Problem III with a = [100; 100]T using the SUPG approximation
for the sequence of meshes, h = 2−3 . . . 2−7 and the Rayleigh quotient iteration as the
eigenvalue solver. (a): Expectation of the eigenvalue E[λ`] (black line) and of the difference
between two levels |E[λ` − λ`−1]| (blue line). (b): Variance of the eigenvalue V[λ`] (black
line) and of the difference V[λ` − λ`−1] (blue line). (c): Average number of Rayleigh
quotient iterations for computing the differences. (d): Average computational time for the
difference of one sample.

To further investigate the issue of the variance of difference V[λ3−λ2], we perform the

same test but with the implicitly restarted Arnoldi method instead. The numerical results

for SUPG MLMC with Arnoldi method using 104 samples at each level are presented in

Figure 5.7. Figure 5.7a shows the expectation of difference |E[λ` − λ`−1]| at each level.

The mean decreases with a slightly different rate α ≈ 3.6 compared to case with the

Rayleigh quotient iteration (α ≈ 3.89). However, Figure 5.7b illustrates that the variance

of difference V[λ`−λ`−1] has a different behaviour compared to the previous case with the

Rayleigh quotient iteration (Figure 5.6b). Similarly, the variance increases from level zero

to level one. However, after that, the variance V[λ2 − λ1] decreases from ≈ 213 to ≈ 29.
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Figure 5.7c shows the average number of Arnoldi iterations while Figure 5.7d show the

average computational time of the Arnoldi method at each level `. The cost increase rate

γ ≈ 3.6 is lower than the variance reduction rate β ≈ 4.7 yielding an O(ε−2) complexity

(Theorem 1).

The difference in the behaviour of the Rayleigh quotient and Arnoldi iterations is

because the coarsest mesh h = 2−3 in this case contains complex eigenvalues for some

realizations of the random field κ(x;ω) due to cross-diffusion in Problem III and we

have no complex arithmetic in our current implementation of the iterative solver. As a

consequence, the Rayleigh quotient iteration converges to the smallest real eigenvalue

while the Arnoldi method converges to the smallest eigenvalue which is complex for some

samples on the mesh with h = 2−3. Moreover, as we employ a two-grid method for

the Rayleigh quotient iteration to obtain the solution on the adjacent mesh levels, the

approximate eigenvalue obtained on the coarse mesh propagates into the solution on the

next mesh level. As a result, the Rayleigh quotient iteration converges to the closest to

this eigenvalue on the finer mesh instead of to the actual smallest one.

CPU time vs. MSE plot for Problem III is shown in Figure 5.8. All three methods

give an O(ε−2) complexity. However, SUPG MLMC and FEM MLMC with the Rayleigh

quotient iteration perform almost similarly in terms of the computational complexity.

SUPG MLMC with the implicitly restarted Arnoldi method, on the other hand, is more

robust when computing the eigenvalues of the convection-diffusion operator. As a result,

the difference in the computational cost is about 28 between SUPG MLMC with the

Arnoldi method and SUPG / FE MLMC with the Rayleigh quotient method.
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Figure 5.7 – Multi-level Monte Carlo method using 104 samples at each level to find the
smallest eigenvalue of Problem III with convection skew to mesh a = [100; 100]T using
the SUPG approximation for the sequence of meshes, h = 2−3 . . . 2−7 and the implicitly
restarted Arnoldi method as the eigenvalue solver. (a): Expectation of the eigenvalue
E[λ`] (black line) and of the difference between two levels |E[λ` − λ`−1]| (blue line). (b):
Variance of the eigenvalue V[λ`] (black line) and of the difference V[λ`−λ`−1] (blue line).
(c): Average number of Arnoldi iterations for computing the differences. (d): Average
computational time for the difference of one sample.
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Chapter 6

Conclusion and Future work

6.1 Thesis summary

In this thesis we considered and developed various strategies for the multi-level and multi-

index Monte Carlo (MLMC and MIMC) methods for solving elliptic problems in 2D

with uncertainties related to the conductivity. In Chapter 2, we introduced the general

concepts of MLMC and MIMC on which the other chapters are based. We established that

under certain circumstances MLMC and MIMC outperform the standard Monte Carlo

method for quantities of interest (QoI) that are computed as discretized functionals.

For such quantities we required a construction of a convergent sequence of discretized

models to our targeted quantity. It was shown that if the sequence converges faster than

its cost increase then MLMC and MIMC have a better complexity than the standard

Monte Carlo method. Chapter 3 investigated and developed four MLMC and two MIMC

methods to compute two quantities of interest based on the solution of an elliptic PDE;

one QoI is the average solution in a given volume and the other is the average flux at

given locations. The first MLMC method was geometric MLMC in which the sequence

of discretized elliptic problems was constructed by halving the mesh size with level. The

second MLMC scheme was the geometric MLMC method but with the use of second-

order basis functions at each level. The third MLMC method was hp-MLMC in which the

approximate sequence was constructed by simultaneously increasing the polynomial order

of basis functions and refining the mesh with level. The last MLMC was p-MLMC in which

the sequence was obtained by only increasing the order of basis functions without any

mesh refinement. Next, we introduced hxhy-MIMC which was the geometric multi-index

Monte Carlo method utilizing directional refinement in hx and hy. Finally, we developed

a new MIMC method (hxpx, hypy-MIMC) based on incomplete basis functions in 2D. All

presented methods yielded the same optimal complexity O(ε−2) for both QoIs.

In Chapter 4 we considered the geometric and homotopy MLMC alongside the finite

element approximation for finding the smallest eigenvalue of the convection-diffusion op-

erator with randomness in conductivity for cases with low and high velocity. The newly

developed homotopy MLMC method was based on the homotopy continuation method,
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utilizing solutions with lower velocities. Rayleigh quotient and implicitly restarted Arnoldi

iterations were incorporated in both MLMC methods. For the case with low velocity, the

developed MLMC methods showed O(ε−2) complexity compared to the standard Monte

Carlo method which has O(ε−5) complexity. Geometric MLMC with the Arnoldi method,

overall, performed better than all other presented methods, because the main contribu-

tion in the computational cost comes from the coarsest level and the Arnoldi method had

the cheapest cost on this level, although the Rayleigh quotient iteration was cheaper on

all other levels. For the case with high velocity, geometric MLMC with the Arnoldi and

Rayleigh quotient iterations performed similar to each other having O(ε−2) complexity

but the overall computational cost was higher than for the case with low velocity as a

result of starting the multi-level sequence with a finer mesh in order to obtain a stable so-

lution. However, homotopy MLMC showed almost the same cost O(ε−4.9) as the standard

Monte Carlo method O(ε−5).

Chapter 5 proposed an alternative approach in dealing with spurious oscillations

in convection-dominated regions. The geometric MLMC was coupled together with the

streamline-upwind/Petrov-Galerkin method (SUPG) to obtain an efficient method.

6.2 Future work

In order to better understand the presented methods, further research is required in

several directions. First, one can consider the extension to higher-dimensional PDEs,

such as 3D elliptic problems. The variance reduction rate of the geometric MLMC is

the same for a continuous QoI and does not depend on the dimension of the underlying

PDE with the use of the finite element discretization with linear basis functions, which

results in a variance reduction rate of O(h−4). On the other hand, the cost increase rate

depends on the dimension of the PDE. In case of 2D elliptic problems, the cost of solving

the discretized problem is O(h−2) using iterative solvers with naive implementation or

O(h−3/2) using direct solvers with permutations. In 3D, the situation is different and the

direct solvers have a poor performance. As such, MIMC may perform significantly better

compared to MLMC, because MIMC complexity depends on the directional variance and

cost, although there is an additional constraint on the mixed regularity of the QoI for

some MIMC methods. There is another direction in which the geometric MLMC can

be improved. Multigrid and multilevel solvers utilize in a similar fashion a sequence of

discretized grids or a sequence of function spaces. Because of that, they can be coupled

with the geometric MLMC when computing the difference between two adjacent levels

for one sample.

Second, the proposed hxpx, hypy-MIMC showed good performance, even in the case of

the discontinuous QoI where hxhy-MIMC experienced oscillations in variance.

Third, further investigation is required in case of non-self-adjoint eigenvalue problems.

As previously stated, more research is needed for 3D problems. The Rayleigh quotient
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iteration may perform poorly for higher-order problems because it requires the solution

of ill-conditioned linear systems; as such direct solvers may not be applied because they

poorly scale with the dimension of the problem and iterative solvers may not converge, so

special care should be taken. On the other hand, the Arnoldi method requires only matrix-

vector products and solving a system of linear equations with mass matrix. Moreover, cases

with random velocity and inhomogeneous boundary conditions should be considered as

well. Finally, the SUPG MLMC method and its possible extension SUPG MIMC should

be investigated for cases with conductivity modelled as a log-normal random field. For

cases with convection skew to mesh, various stabilization parameters should be considered

to deal with spurious oscillations properly.
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